Contents

Preface ix

1 **Inverse Scattering in Two Dimensions** 1
 1.1 Introduction .. 1
 1.2 Classical Inversion Techniques 4
 1.3 The Linear Sampling Method 7
 1.4 Regularization of the LSM 9
 1.5 Numerical Results in Two Dimensions 11
 1.5.1 Scattering by a Circular Cylinder 12
 1.5.2 Two Scatterers Using Synthetic Data 14
 1.5.3 Real Data 16

2 **Maxwell’s Equations** 19
 2.1 The Scattering of Electromagnetic Waves 19
 2.2 The Stratton–Chu Formulae and Their Application 21
 2.3 Vector Wave Functions and Electromagnetic Herglotz Pairs 25

3 **The Inverse Scattering Problem for Obstacles** 29
 3.1 A Uniqueness Theorem 30
 3.2 Approximation Properties of Electromagnetic Herglotz Pairs 32
 3.3 The Linear Sampling Method 38
 3.4 Limited Aperture Data 45
 3.5 Numerical Examples in Three Dimensions 46
 3.5.1 A Disconnected Scatterer: Two Balls 47
 3.5.2 The Teapot 49
 3.5.3 Impedance Cube 49
 3.5.4 Reconstruction of λ and Limited Aperture 50

4 **The Inverse Scattering Problem for Anisotropic Media** 53
 4.1 Uniqueness Theorems 55
 4.2 The Interior Transmission Problem 69
 4.3 Determination of the Support 76
 4.4 A Lower Bound for $\|N\|_2$ 80
 4.5 The Existence of Transmission Eigenvalues 83
 4.6 Partially Coated Objects 89
viii Contents

5 The Inverse Scattering Problem for Thin Objects 93
 5.1 Scattering by Thin Objects 93
 5.2 Approximation Theorems 97
 5.3 Solution of the Inverse Problem 99
 5.4 Numerical Reconstruction of Screens 105

6 The Inverse Scattering Problem for Buried Objects 107
 6.1 Scattering by Buried Objects 108
 6.2 Near Field Data 110
 6.3 The Reciprocity Gap Functional Method 112
 6.4 Numerical Reconstruction of Buried Objects 126

Bibliography 129

Index 137