Index

A/H1N influenza, 143
 pandemic of 2009, 144
active cluster, 202
active generalized household, 201, 202
active tuberculosis, 195, 202, 203, 205, 207
activity level, 65
age cohort, 77
age groups, 125
age of infection, 19, 21, 23
age of infection model, 19–25, 68–71
age structure, 55, 75
age-dependent birth rate, 87
age-dependent contact process, 94
age-dependent death rate, 76, 86
age-specific interaction, 154
age-structured disease transmission model, 75, 86, 88
age-structured population, 75, 86, 87
age-structured population model, 75, 76
airline transportation, 97
annual seasonal epidemic, 125
antibiotic induced resistance, 198
antiviral drugs, 121, 128, 131, 139, 144
antiviral treatment, 121, 128–133, 138
Antonine plague, xiii
approximation, 138
Asian influenza, 144
asymptomatic, 122
asymptomatic carrier, 163
asymptomatic cases, 124
asymptomatic compartment, 122
asymptomatic infection, 123
asymptomatic member, 128
asymptomatic period, 122, 124
asymptomatic stage, 71, 132
asymptotic speed of spread of disease, 76
asymptotic stability, 35–37, 43
asymptotic theory, 21
asymptotically autonomous system, 35, 42, 155
asymptotically stable equilibrium, 41
attack rate, 5, 124, 128, 131
attack ratio, 68
autonomous system, 4
avian influenza, 1, 121
backward bifurcation, 40–46, 200
bacteria, xv
bacterial agents, 31
baseline value, 125
basic reproduction number, 4, 7, 9–11, 15, 17–19, 26, 32, 36, 47, 48, 56, 57, 59, 62, 66, 67, 69, 124, 126, 130, 133, 164
basic reproductive number, 7, 40, 42, 43, 45, 99, 103–109, 147, 148, 167, 198, 204, 205, 240
behavior, 132
behavioral change, 138
behavioral factor, 7
behavioral heterogeneity, 55, 75
Bernoulli, Daniel, xiv
bifurcation, 40
bifurcation curve, 40, 45–46
bilinear incidence, 25
biological weapon, 98
biologically realistic region, 35
bioterrorism, 97
birth, 51
birth modulus, 77, 82
Black Death, xiv, 146
boundary equilibrium, 223–225
branching process, 2, 8
branching process disease outbreak, 8–11
Brownlee, J., xiv
bubonic plague, xiv, 52
bus transportation, 97

carrying capacity, 33, 35
Centers for Disease Control and Prevention (CDC), 98, 207, 208, 211
Chagas disease, 38
characteristic equation, 48–50, 105, 108, 171
chicken pox, xv, 75
childhood disease, 75
cholera, xv
clinical attack rate, 124
clinical case, 124, 125
cluster size, 205
cocexistence equilibrium, 223, 225–228
cocexisting multiple state, 200
cohort, 3, 76
communicable disease, xiii
cocparison principle, 233, 234
cocompartment, 125, 128, 132, 139
cocompartmental epidemic model, 65
cocompartmental model, xiv, 1, 11, 19, 28, 122, 131, 135, 138, 139
cocompartmental structure, 132
cocompetitive exclusion, 150, 225
cocomdons, 237, 241–243, 249–252
cocomctact, 10, 122, 123, 125, 128, 134, 138, 139
cocomctact intervention, 11
cocomctact network, 121
cocomctact number, 32, 110
cocomctact rate, 7, 25, 34, 55, 96, 110, 123, 130, 134, 138, 230, 253
cocomctact social structure, 94
cocomctact structure, 101, 138
cocomctact tracing, 128
cocomctact/mixing structure, 220
cocomtinuum of cocexistence equilibrium, 235
cocomtrol, 125, 127, 128, 131
cocomtrol measure, xvi
cocomtrol parameter, 18
cocomtrol policy, xiii
cocomtrol reproduction number ${R_c}$, 17, 56, 126, 130
cocomtrol strategies, 206
cocomcgroup, 64, 219, 237, 249, 250
cocomcgroup model, 238–240
cocommodel, 243
cocomc populations, 246
cocomritical cluster size, 205
cocomitical transmissibility, 11
cocomcross-immunity, xv, 143–146, 150–153, 156
decomdeath modulus, 77, 82
decomdeath-adjusted mean infectious period, 168, 174
decomdegree distribution, 8, 10
decomdeliberate release of smallpox, 112
decomdeliberate smallpox release, 99
decomdemographic effect, xv, 1, 122
decomdemographic equilibrium, 147
decomdemographic time scale, xv, 34, 37, 39
decomdemography, 93
decomdensity dependence, 138
decomdeterminant, 13, 14
decomdeterministic compartmental model, 2, 8
decomdeterministic epidemic process, 2
decomdeterministic model, 10, 96
decomdiarrhea, xv
decomdiphtheria, xiii
decomdisease coinfection, 165
decomdisease compartment, 57, 59
decomdisease death, 121, 123–125, 127, 131, 133, 138
decomdisease dynamic, xiii, 205, 212
decomdisease evolution, xiii
decomdisease mortality, 51
decomdisease outbreak, xiii, 8
decomdisease severity, xiii
decomdisease transmission, xvi
decomdisease transmission model, 55, 64
decomdisease-free equilibrium, 12, 18, 32, 33, 35, 36, 39, 40, 42, 43, 46–49, 57, 58, 61, 64, 103, 167, 180, 206, 240
Index

265

disease-free state, 246
disease-free system, 58
disease-induced mortality, 163, 166, 204
drug resistance, 138, 139, 197
drug sensitivity, 197
drug-resistant strain, 197
drug-sensitive strain, 197
dynamic social interaction, 93
dynamics of HIV/AIDS, 220
dynamics of pairing, 93
dynamics of tuberculosis, 192, 199
dynamics total population size, 94

edge, 10
efficacy, 127
eigenvalues, 13, 14, 16, 36, 48, 52, 59,
 61, 66, 104, 225
eigenvectors, 59
En’ko, P.D., xiv
endemic disease, 34
endemic equilibrium, 32, 33, 35–37, 40,
 41, 43–50, 52, 63, 64, 88, 175,
 226, 240, 241, 248
endemic HIV/AIDS case, 242
endemic population size, 242
endemic situation, xv
endemic states, 75
endogenous reactivation, 192
epidemic, xiv–xvi, 2, 4
epidemic disease, xiii
epidemic final size, 71
epidemic model, xiv, 1, 6, 8, 11, 26, 32,
 34, 36, 47, 55
epidemic size, 124
epidemic wave, 150
epidemiologically active cluster, 202, 204
equilibrium, 13, 14, 35
equilibrium population size, 33
equilibrium age distribution, 81, 83
equilibrium infective population size, 41
equilibrium infective population size \(I \),
 40
equilibrium solution, 231
evolution of sexually transmitted diseases,
 252
evolutionary dynamic, 143
evolutionary biologist, xiv

excess degree, 9
exchange of stability, 40
exogenous reinfection, 199–200
exogenous tuberculosis, 192
exponential of a matrix, 59
exposed class \(E \), 12
exposed period, 5, 12–13
extended cluster model, 205
extrapulmonary tuberculosis, 192

final size inequality, 27
final size relation, 5, 6, 14, 16, 19–21, 56,
 67–69, 71, 123, 124, 126, 127,
 130, 133, 138
flow, 228
flow diagram, 123, 126, 129, 132
forward bifurcation, 40, 41, 206

gender-specific core group, 248
general mixing, 69
generalized cluster model, 205
generalized household model, 202, 203
generalized households, 201
generating function, 8–10
global stability, 231–233
gonorrhea, xv, 31, 219, 252

H1N1 influenza, 1
 pandemic of 2009, 122, 134, 138
H5N1 strain, 121
Hamer, W.H., xiv
helminth agents, 31
hepatitis B, 38
herd immunity, 38
heterogeneity, 27, 55, 75, 111, 144, 153,
 164, 219, 220
heterogeneity in mixing, 65
heterogeneous mixing, 94, 138, 163
heterogeneous mixing contact rates on
 HIV/AIDS dynamics, 163
heterosexual transmission of HIV/AIDS,
 xv
Hethcote, H.W., 147
high-risk group, 237
high-speed computing, xvi
HIV/AIDS dynamics, 243, 246, 248, 252
HIV/AIDS in Nigeria, 236–243
HIV/AIDS infection, 243, 245
HIV/AIDS infectious state, 253
HIV/AIDS prevalence, 243, 249
HIV/AIDS with heterosexual transmission, 28
HIV/AIDS-free equilibrium, 180, 182
HIV/AIDS-tuberculosis coinfection, 163
HIV/TB model, 165
home neighborhood, 103
homogeneous mixing, 27, 55, 178
homogeneous mixing epidemic model, 68
homogeneously mixing homosexually active population, 164, 180
homosexually active individual, 221
homosexually active population, 165, 220
Hong Kong influenza, 144
Hopf bifurcation, 40, 50, 145, 148, 152
host, 63, 64
host mobility, 212
host population, 63

immune system, 150, 176
immunity, 1, 31, 39, 46
immunity against reinfection, 2
immunization, 2, 7, 38
immunological level, 212
inactive generalized households, 202
incubation period, 98, 122, 163, 164
index case, 59
infection-free equilibrium, 222, 231–233
infection-free state, 168, 175, 232
infectious disease, xiii
infectious period, 98, 163
infective, 12
infective compartment, 122
infective member, 128
infective period, 124, 125, 128, 130
infective stage, 132, 133
infectivity, 19, 20, 122, 125, 128, 132
influenza, xiv, xv, 15, 71, 97, 121, 122, 125, 131, 133, 143–146, 150–154, 197
influenza model, 149
influenza mutation, 144
initial condition, 123, 126, 129, 132
initial exponential growth rate, 13, 14, 16, 21
initial growth rate, 7
initial infection, 10
initial infective, 14, 20, 70, 122
initial secondary vertex, 9
initial value, 131
inoculation, xiv
integral condition, 78
integral equation, 139
interro-differential equation, 85, 139
interacting subpopulation, 94
interaction, 11
intracohort mixing, 87
isolated compartment, 139
itinerant sex worker, 236

Jacobian matrix, 61, 104, 227
joint dynamics of TB and HIV/AIDS, 177

Kermack, W.O., xiv, 1–7, 19, 31, 34, 51, 147, 148, 155, 211

latent members, 71, 122, 124, 126, 128, 131
latent period, 98, 125, 132, 163
latent tuberculosis, 208
Leslie’s single-sex model, 93
limit equation, 84
line of equilibrium, 5
linear Volterra integral equation, 79
linearization, 21, 43, 49, 58, 222
linearization about the equilibrium, 85
linearization at an equilibrium, 37, 48, 224
linearized Jacobian, 240
local asymptotic stability, 104
long-distance truck driver, 236
long-term dynamics of tuberculosis, 206, 207
Lotka’s characteristic equation, 155
Lotka, A.J., 96, 220
Lotka–Sharpe equation, 80
Lyapunov function, 241
M-matrix, 60, 228
major epidemic, 10, 11
malaria, xiv, xv, 28, 63, 64, 96
management decision, xvi
management strategy, xv, 121, 125, 138
marriage function, 93, 111
mass transportation system, 97
mass vaccination, 98
mass-action contact, 63
mass-action incidence, 25, 138
mass-action law, 94
mass-action model, 94
mass-transportation system, 144
mathematical demography, 93
mathematical method, xiv
mathematical model, xiii, xvi
matrix, 36
matrix of the linearization, 12, 13, 46, 47
McKendrick equation, 77, 83
McKendrick, A.G., xiv, 1–7, 19, 31, 34, 51, 76, 147, 148, 155, 211
mean degree, 8
mean excess degree, 9
mean generalized household size, 202
mean infectious period, 174
mean infective period, 65
mean number of sexual partner, 164
mean transmissibility, 10
measles, xiii, xv, 38, 75
meningitis, xv
metapopulation model, 76
method of characteristic, 78–82
Michaelis–Menten interaction, 26
minor outbreak, 10, 11
mixing, 111
mixing framework, 93
mixing matrix, 96
mixing model, 75
mixing pattern, 64, 66, 138
models including quarantine of suspected
individual, 5
monotone flow, 222
morbidity, 121
mortality, 121
mortality function, 77
multigroup mixing function, 96–97
multigroup model, 164
multilayered mixing, 112
multilevel mixing environment, 97
multiple equilibrium, 164
multiple steady state, 200
multistrain sexually transmitted diseases, 220
multistrain tuberculosis model, 197
mutations in a virus, 47
network, 10, 11, 121, 138
network approach, 8
network model, 11, 28, 64, 65
next generation matrix, 57, 62, 63, 126
next generation matrix with large domain, 59, 61, 62
next generation operator, 69, 104
noncore populations, 246, 250
nondisease compartment, 57
nonlinear integral equation, 174
nonlinear integro-differential equation, 196
nonlinear renewal equation, 84, 85
nonnegative matrix, 60
nonsingular M-matrix, 61
nontrivial equilibrium, 234
numerical simulation, xvi, 37, 150
occupied edge, 10
one-dimensional continuum, 228
one-sex population, 76
one-strain endemic equilibrium, 152
oscillation, 37
oscillation epidemic, 136
oscillatory coexistence, 153
pair formation, 93, 95, 111
pandemic, 121, 125, 130, 131, 138, 143
of 1918, 121
of 1957, 121
of 1968, 121
pandemic influenza, 121
parameter, 122, 124, 125, 127, 130–133, 138
parameter estimation, xvi
partial differential equation model, 93
patches, 220
pathogen, 229
pathogen strain, 221
pathogenicity, 37
per-capita contact rate, 32
per-capita natural mortality, 204
periodic solution, 50, 52, 148, 152, 156
persistent age distribution, 79
physiological measure, 76
plague, xiv
policy, 128
policy decision, 121, 131, 138
population size, 122, 123
population structure, 144
population-level immunological response, 145
population-level mating structure, 93
pre-epidemic vaccination, 122
prediction, 122, 123, 130, 133, 138
preference matrix, 97
preferred mixing, 67
primary infected vertex, 9
probability, 10, 11, 124, 125
prodrome phase, 98
proportionate mixing, 66–69, 71, 96, 97, 154
proportionate mixing model, 103
public health professional, xvi
pulmonary tuberculosis, 192
qualitative behavior, xvi, 4
quarantine, xvi, 17, 34, 145, 146, 152, 153
quarantine class, 145
quarantine rate, 147
quarantine-isolation model, 17–19
quasi-steady state, 246
random edge, 9
reaction-diffusion system, 150
reactivation of tuberculosis, 200
recovered member, 34
recovery rate, 4
recurrent epidemic, 52
recurrent epidemic outbreak, 145
recurrent epidemic single-strain outbreak, 150
region of coexistence, 198
relative reproductive number, 249
removed member, 34
removed compartment, 122
renewal condition, 80, 87
renewal equation, 79, 81
reproduction number, 12, 66, 126
resident population, 109
resistant tuberculosis strain, 198
respiratory infection, xv
rinderpest, 38
ring vaccination, 98
Ross solution, 95, 96
Ross, R.A., xiv, 28, 63, 64, 147, 148, 211, 219–221
rotavirus, 197
Routh–Hurwitz condition, 37
Routh–Hurwitz stability criteria, 172
rubella, xv, 75
SARS epidemic, xiv, xv, 1, 76, 146
saturation, 25, 123
schistosomiasis, xv
seasonal epidemic, 121, 125, 138
seasonal influenza, 55, 144
secondary host infection, 64
secondary infected vertex, 9
secondary infection, 10, 13, 32, 58, 59
secondary vector infection, 64
SEIR model, 2, 21, 22, 61
SEIS model, 2
sensitivity analysis, 138, 241–243
separable solution, 96, 97, 154
separation of variable, 52
serological study, 7
sex industry, 236
sex workers, 237, 238, 241–243, 253
sexual partners, 166, 168, 237
sexually active core, 238
sexually active noncore population, 220
sexually active population, 245
sexually transmitted disease model, 220
sexually transmitted disease multistrain competition, 252
sexually transmitted diseases, xv, 33, 41, 55, 93, 94, 97, 219, 220
SI structure, 63
simulations of a stochastic model, 64
single-sex SIS model, 229
single-strain age-structured model, 154
single-strain model, 156
Index

SIQR model, 146–148
SIR model, 2, 3, 5, 13, 31, 37, 39, 40, 46, 47, 51, 55, 63, 65, 122, 135, 145, 146, 148, 153–157
SIRS model, 2, 47, 48
SIS model, 2, 31, 37, 39–40, 42, 63, 220, 221
SITR model, 15
sleeping sickness, xv
smallpox, xiii, xiv, 38, 93, 97–99, 110, 111
social dynamic, 93, 144, 220
social factor, 212
Spanish flu pandemic, 135
Spanish influenza, 144
spatial heterogeneity, 75
spatial spread of a disease, 76
spectral bound, 60
spectral radius, 62
spectral radius of a matrix, 59
stability of an equilibrium age distribution, 88
stability of the endemic equilibrium, 170
stability of the equilibrium, 13
stable age distribution, 79, 80, 93
stable periodic orbit, 50
standard incidence, 25
states at infection, 62
stochastic branching process, 8
stochastic branching process model, 11
stochastic mathematical model, 191
stochastic model, 10
stochastic simulation, 121, 138
strain, 121, 125, 128
strain coexistence, 153
strain-specific reproductive number, 231
strain-variability, 143
strategic disease transmission model, 134
super-spreader, 64
survival fraction, 77
susceptibility, 10, 55, 125, 128
susceptible population, 4
sustained oscillation, 146
sustained periodic solutions
(\textit{SIQR} model), 146
symmetric cross-immunity, 152
symmetric matrix, 97
symptomatic attack rate, 124, 125, 131
symptomatic case, 124, 125
symptomatic disease case, 127
symptomatic period, 98
tactical model, 134
Taylor series, 59
TB/HIV coinfection, 176, 179
TB/HIV model, 177, 182
temporary immunity, 46–50
threshold, 9
threshold quantity, 4
threshold behavior, 37
time scale of an epidemic, 34
tipping point, 211
total cross-immunity, 145
trace vaccination, 98
transactional sex, 236–243
transcritical bifurcation, 211, 212
transient population, 109
transient subpopulation, 110
transmissibility, 10–11, 136, 150
transmission, 10
transmission dynamics, 93, 94, 163, 180, 219, 252
transmission intervention, 11
transmission network, 99
transmission of infection, 8
transmission pattern, 145
transmission rate, 147
transmitting infection, 12
traveling wave solution, 150
treated asymptomatic, 125
treated infective, 125
treated latent member, 125
treated member, 125
treated susceptible, 125, 127
treatment, xvi, 126–128, 130–133
treatment during an epidemic, 122
treatment model, 5, 15–16, 23
treatment rate, 128, 131, 133, 204
truck drivers, 237, 238, 241–243, 249–253
tuberculosis, xv, 63, 97, 99, 146, 176–180, 191–197, 199, 206–211
Index

270

Index

tuberculosis control reproduction number, 179
tuberculosis dynamics, 194, 195
tuberculosis free equilibrium, 200
tuberculosis prevalence, 205
tuberculosis progression, 193
tuberculosis transmission, 205
tuberculosis vaccine, 195
tuberculosis-active incidence, 211
tuberculosis-vaccination strategy, 206
two-group $SI R$ epidemic model, 65
two-group age of infection model, 69
two-neighborhood model, 110
two-sex age-structured population, 94
two-sex contact structure, 229
two-sex framework, 229
two-sex HIV/AIDS model, 220
two-sex interaction, 229
two-sex mixing function, 95
two-sex model, 93
two-sex separable mixing function, 95
two-sex sexually transmitted disease model, 229–236
two-strain age-structured model, 156
two-strain model, 146
two-strain multigroup single-sex model, 221–229
typhus, xv
unique endemic equilibrium, 168
unique positive endemic equilibrium, 169
unique positive equilibrium, 175
unstable, 52
unstable endemic equilibrium, 41
unvaccinated, 125, 126, 128
unvaccinated member, 55
urban center, 99
vacinated class V, 42
vacinated member, 42, 55
vaccination, xiv, 15, 38, 40–46, 62, 98, 125–128, 130, 133
vaccination model, 42, 55, 61
vaccine, 34, 121, 125, 127, 128, 143
vaccine stockpiles, 144
variable infectivity, 163
vector, 63, 64
vector (mosquito) population, xiv
vector disease, 28
vector population, 63
vector transmission, 28, 63–64
vector-transmitted diseases, 63, 219, 249
vertex, 10
vertex of degree k, 10
vertical transmission, 38–39, 163
viral agent, xv
Volterra integral equation, 84
von Foerster equation, 77
West Nile virus, 28, 63
World Health Organization (WHO), 98, 121, 143, 201, 206