
Preface

We often observe web-like patterns of waves on the surface of shallow wa-
ter. They are examples of nonlinear waves, and these patterns are generated by
nonlinear interactions among several obliquely propagating solitary waves.

This is a book about those two-dimensional wave patterns and is based on
a set of lectures I delivered May 20–24, 2013, as part of a series sponsored by
the National Science Foundation (NSF) through the Conference Board on the
Mathematical Sciences (CBMS). The title of the lecture series was “Solitons in
Two-Dimensional Water Waves and Applications to Tsunami.” The main purpose
of the lectures was to introduce modern mathematical tools to analyze those wave
patterns. These tools are from several mathematical areas including algebraic
geometry, algebraic combinatorics, and representation theory. In the lectures, I
tried to convince audiences (mainly young researchers and graduate students) that
despite their abstract nature they are quite useful to gain a deeper understanding
of two-dimensional wave interactions. The conference was organized by Ken-
Ichi Maruno and Virgil Pierce, and it was held at the University of Texas at Pan
American (now a part of the University of Texas Rio Grande Valley). In addition
to my lectures, talks were given by M. Ablowitz, S. Chakravarty, P. Guyenne, A.
Kasman, T. Mizumachi, H. Segur, L. Williams, and H. Yeh.

To begin with, let me start by quoting a well-known story of the first recog-
nition of a solitary wave on a water surface. In August, 1834, John Scott Russell
observed a large solitary wave in a shallow water channel in Scotland. He noted
in his paper [122] on the subject that

I was observing the motion of a boat which was rapidly drawn along
a narrow channel by a pair of horses, when the boat suddenly stopped
- not so the mass of water in the channel which it had put in motion;
it accumulated round the prow of the vessel in a state of violent ag-
itation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded,
smooth and well defined heap of water, which continued its course
along the channel apparently without change of form or diminution
of speed ....

This solitary wave is now known as an example of a soliton and is described
by a solution of the Korteweg-de Vries (KdV) equation [82]. The KdV equa-
tion describes “one-dimensional” wave propagation such as beach waves parallel
to the coast line or waves in a narrow canal, and is obtained in the leading or-
der approximation of an asymptotic perturbation theory under the assumptions of
weak nonlinearity (small amplitude) and weak dispersion (long waves). The KdV
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equation has a rich mathematical structure including the existence of solutions
containing an arbitrary number of solitons, called N-soliton solutions, and the
Lax pair, a pair of linear operators whose compatibility condition gives the KdV
equation. The KdV equation is a prototype equation of the 1+ 1 (space + time)-
dimensional integrable systems. In particular, the initial value problem of the
KdV equation has been extensively studied by means of the method of inverse
scattering transform (IST) based on the Lax pair [49] (see also [97] by Miura for
an excellent review of the KdV equation). It is well known that a general initial
datum decaying rapidly in the spatial variable evolves to a number of individual
solitons and weakly dispersive wave trains separate from the solitons. See, for
example, [4, 106, 108, 146] for the review of the KdV equation and the related
topics on the integrable systems in general.

In [61], Kadomtsev and Petviashvili proposed a (2+ 1)-dimensional disper-
sive wave equation to study the stability of the one-soliton solution of the KdV
equation under the influence of weak transverse perturbations. This equation is
now referred to as the KP equation. It turns out that the KP equation has a much
richer structure than the KdV equation, and might be considered as the most
fundamental integrable system in the sense that many known integrable systems
can be derived as special reductions of the so-called KP hierarchy which con-
sists of the KP equation together with its infinitely many symmetries (see, e.g.,
[108, 3, 36, 99]). The KP equation can be also represented in the Lax form; that
is, there exists a pair of linear equations associated with an eigenvalue problem
and an evolution of the eigenfunction, which enables the method of IST. However,
unlike the case of the KdV equation, the IST for the KP equation does not seem
to provide a practical method of solving the initial value problem for initial waves
consisting of line-solitons in the far field (see, for example, [17, 18, 16, 144, 145]).

In two-dimensional wave phenomena in shallow water, we observe that wave
refraction, reflection, and diffraction lead to obliquely interacting waves, and
when their amplitudes are sufficiently large, nonlinear effects can have striking
effects on the resulting surface patterns. In particular, the resonant interactions
among these obliquely propagating solitary waves play a fundamental role in mul-
tidimensional wave phenomena. The original description of the soliton interaction
for the KP equation was based on a two-soliton solution found in Hirota bilinear
form (see, e.g., [57]), which has the shape of an “X,” describing the intersec-
tion of two lines with an oblique angle and a phase shift at the intersection point
without resonance. In [70] and this book, this X-shaped solution is sometimes
referred to as the “O”-type soliton, where O stands for “original” or “ordinary.”
In his study of 1977 on an oblique interaction of two line-solitons, Miles [95, 96]
pointed out that the O-type solution becomes singular if the angle of the inter-
section is smaller than a certain critical value depending on the amplitudes of the
solitons. Miles then found that at the critical angle, the two line-solitons of the
O-type solution interact resonantly, and a third wave is generated to form a “Y-
shaped” wave as a result of three-wave resonant interaction. Indeed, it turns out
that such Y-shaped resonant waves are exact solutions of the KP equation (see also
[107, 111]). Miles applied his theory to study the Mach reflection phenomenon of
an incident wave onto a vertical wall and predicted that the third wave, called the
Mach stem, created by the resonant interaction can reach “four-fold” amplification
of the incidence wave. Several laboratory and numerical experiments attempted
to validate his prediction of four-fold amplification, but with no definitive success
(see, for example, [48, 67, 138] for numerical experiments and [114, 94, 85] for



Preface xi

laboratory experiments). The Mach reflection phenomenon is one of the main
topics in this book, which will be discussed in some detail in Chapter 8.

After the discovery of the resonant phenomenon in the KP equation, several
numerical and experimental studies were performed to investigate resonant inter-
actions in other physical two-dimensional equations such as the ion-acoustic and
magneto-hydrodynamic equations under the Boussinesq approximation (see, for
example, [62, 63, 43, 103, 48, 138, 110, 142]). However, apart from these activ-
ities, no further progress has been made over almost 30 years in the study of the
KP equation. It would appear that the general perception was that there were not
many new and significant results left to be uncovered in the soliton theory of the
KP equation.

Over the past several years, I have been working with several collaborators
on the classification problem of the soliton solutions of the KP equation and their
applications to shallow water waves. Our studies then have revealed a large vari-
ety of solutions that were totally overlooked in the past, and we found that some
of those exact solutions are quite useful to study the Mach reflection problem
[14, 70, 25, 24, 26, 75, 152, 85]. Our numerical studies [75, 65] indicate that the
solution to the initial value problem of the KP equation with a certain class of
initial waves converges asymptotically to some of these exact solutions, that is, a
separation of dispersive radiation from the soliton solution similar to the case of
the KdV soliton.

The main purpose of this book is to explain some details of these results on
the solitary wave solutions of the KP equation, referred to as the KP solitons.
There are eight chapters. The purpose of Chapter 1 is to discuss the derivation of
the Boussinesq-type equation from the three-dimensional Euler equation for an
irrotational and incompressible fluid under the assumptions of weak nonlinearity
and weak dispersion using an asymptotic perturbation method. We then derive
the KP equation from the Boussinesq-type equation under a further assumption
with quasi-two-dimensionality. We also calculate the higher order corrections to
the KP equation for the shallow water wave and discuss a normal form theory for
the KP equation with higher order terms.

Chapter 2 presents the KP theory, where the main theme is to introduce the
τ-function, which plays a key role in describing a large class of the KP solitons.
We start to discuss the Burgers equation, which can be linearized to the diffu-
sion equation. The Burgers equation describes weak shock waves in a dissipa-
tive medium. We then show an interesting connection between the KP equation
and the Burgers equation and point out that the resonant interaction in the KP
solitons can be explained by a confluence of the shock solutions of the Burg-
ers equation. Extending the Burgers equation to a multicomponent system, we
define the τ-function as a solution of the system. This extension will be iden-
tified as a part of the general theory of the KP equation developed by Sato (see
[123, 124, 125, 126]). This chapter also includes a brief review of the Sato theory
of the KP hierarchy, where Sato recognized that the solutions of the KP hierarchy
could be written in terms of the orbits on an infinite-dimensional Grassmann va-
riety (or Grassmannian). In this book, we mainly deal with a finite-dimensional
version of the Sato theory.

Chapter 3 provides an elementary introduction to the real Grassmannian, de-
noted by Gr(N,M), the set of N-dimensional subspaces of RM . This gives a
foundation for the classification problem of the KP solitons. We also discuss
the Schubert decomposition of the Grassmannian and introduce the Young dia-
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grams to parametrize the components of the decomposition, called the Schubert
cells. We then provide a refinement of the Schubert decomposition given by a
projection of the Deodhar decomposition which gives a refinement of the Bruhat
decomposition of the flag variety. We introduce the Go-diagram to parametrize
each component of the decomposition, which is a Young diagram filled with black
and white stones in certain special ways. In particular, if the Go-diagram has
only white stones, it gives the

Γ

-diagram (or Le-diagram) introduced by Post-
nikov in [118] to parametrize the totally nonnegative Grassmannians, denoted by
Gr(N,M)≥0. (Here

Γ

is pronounced as “Le” and represents a special property of
the arrangement of white stones; see also Section 3.6.2.) The total nonnegativity
is necessary and sufficient for the regularity of the soliton solutions [77]. We then
note that the

Γ

-diagram can be parametrized by a permutation of the symmetric
group. We also introduce several combinatorial tools such as the chord diagram
to represent the permutation and a network representation of the

Γ

-diagram to
compute the element of Gr(N,M)≥0. In particular, the chord diagram provides a
useful tool to describe the far-field structure of the KP solitons.

In Chapter 4, we present a classification theorem of the KP solitons which
states that the τ-function from a point of Gr(N,M)≥0 generates a KP soliton that
has asymptotically M−N line-solitons for y � 0 and N line-solitons for y �
0. We call such a KP soliton an (M−N,N)-type soliton solution. Moreover,
these solitons can be labeled by the derangements of the symmetric group, which
parametrize the point of Gr(N,M)≥0. We also discuss some details of the special
case of an (N,N)-type soliton solution whose asymptotic line-solitons are the
same for both regions of y � 0 and y � 0. We refer to those KP solitons as
N-soliton solutions. We then present the detailed structure of the KP solitons
associated with the low-dimensional Grassmannians Gr(N,M)≥0. In particular,
we discuss the cases with M = 3 and M = 4, which provide building blocks for
the general KP solitons. The results in this chapter are useful for the remaining
Chapters 6, 7, and 8.

In Chapter 5, we consider the soliton graph which is defined as a tropical
limit of the contour plot of the KP soliton in the xy-plane for fixed t. The tropical
limit means that we consider the variables (x,y, t) in a large scale for the contour
plots of the KP solitons, so that each line-soliton can be approximated by a crest
line of the soliton. Then the soliton graph forms a web-like structure consisting
of piecewise connected line segments. We develop an algorithm to construct the
soliton graphs for t > 0 and t < 0 based on the

Γ

-diagrams associated with the
KP soliton. We also consider the KP soliton including multitime variables of the
KP hierarchy. Then we give a partial classification result for the soliton graphs in
terms of the polyhedral structure of the multitime space. In particular, we show
an interesting connection between the soliton graphs and the triangulations of a
certain point set determined by a polygon inscribed in the parabola.

In Chapter 6, we discuss the stability problem for the KP solitons and also
present some numerical simulations of the KP equation with a certain class of
initial conditions which are somewhat close to exact solutions but not necessarily
small perturbations. In particular, we study the stability problem of a KdV soliton,
i.e., a one-soliton solution parallel to the y-axis, using an elementary perturbation
argument and discuss the result in terms of the recent study by Mizumachi [100].
The main result is that for a small (amplitude) perturbation, one should observe
a generation of a local phase shift which propagates along the crest of the KdV
soliton. We also study numerically the interaction properties of line-solitons and
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show that the solution of the initial value problem with a certain class of initial
waves asymptotically approaches some of those KP solitons discussed in Chapter
4. In particular, we propose a concept called “minimal completion,” which en-
ables us to predict the KP soliton that the solution approaches, based on the chord
diagram developed in Chapter 3.

Chapter 7 discusses the inverse problem in the sense that we construct a KP
soliton which approximates a datum (wave pattern) observed in shallow water or a
result obtained by numerical simulation. The inverse problem is to determine a τ-
function from the data consisting of the amplitudes and slopes of the asymptotic
line-solitons and the interaction pattern of line-solitons. That is, we identify a
point of the totally nonnegative Grassmannian and the underlying vector space
RM from the wave data observed. One should note that we are not solving the
inverse scattering problem based on the Lax pair for the KP equation. The inverse
scattering method for arbitrary initial data is a wide-open problem for the KP
equation.

In the final chapter, Chapter 8, we investigate some details of the Mach reflec-
tion phenomenon in terms of the normal form of the KP equation with higher or-
der corrections discussed in Chapter 1. Here we provide historical background on
the phenomenon which includes numerical simulations, water tank experiments,
and the discrepancy between the results obtained by the Miles theory in [95, 96]
and those experiments. We then re-examine his results in terms of the normal
form theory of the KP equation with higher order corrections. The final goal is
to show that the normal form theory improves the Miles theory in providing an
excellent description of the Mach reflection phenomenon.
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