Index

adjoint, 12
approximation property, 77

backward differentiation formula (BDF), 152
bang-bang control, 107, 108, 110, 160
basic elliptic optimal control problem, 14
BFGS scheme, 46
bilinear interpolation, 123
bilinear optimal control problem, 130
black-box methods, 4, 41
block-pentadiagonal system, 159
boundary optimal control problems, 112
BPX multigrid convergence theorem, 82

C/F splitting of points, 85
cascadic black-box schemes, 48
coarse-grid correction, 74
control constraints, 22
control Hamiltonian, 220
convection-diffusion optimality system, 127
convergence factor, 76, 77, 110, 138
convexity, 5
Crank–Nicolson (CN) method, 152
damped Jacobi iteration, 68
direct interpolation, 85
electromagnetic inverse scattering, 237
electromagnetic properties, 238
exponential time differencing, 252
FAS scheme, 88
with damping, 92

FEM discretization, 133
finite difference time domain (FDTD) method, 238
finite-level quantum system, 220
FMG scheme, 89
Fourier analysis, 21
Fourier symbol, 70
Fredholm integral equations of the second kind, 169
free Hamiltonian, 220
full approximation storage (FAS), 87
full multigrid (FMG), 89
full-weighting restriction, 123

Galerkin projection, 98
Gauss–Seidel iteration, 68
gradient, 5

Hessian operator, 8
hierarchy of objectives, 97
higher-order time discretization, 152
Hilbert space, 4

infinite-dimensional quantum system, 225
iteration matrix, 68

Karush–Kuhn–Tucker (KKT) matrix, 101
Krylov–Newton methods, 47
Index

Lagrangian, 17
Lavrentiev regularization, 115
level number, 79
local Fourier analysis, 69, 117, 161, 170, 171
low- and high-frequency (LF and HF) eigenvectors, 69
multigrid iteration matrix, 80
multigrid optimization (MGOPT) method, 93
multipass interpolation, 86
nested or cascadic iteration, 89
Newton Gauss–Seidel iteration, 113
noninvasive imaging, 237
nonlinear conjugate gradient (NCG) method, 43
nullspace decomposition, 102
nullspace Schur complement, 104, 105
one-shot methods, 62
optical flow problem, 105
optimality conditions, 10
parameter optimization problems, 99
partially reduced SQP methods, 101
perfectly matched layer (PML), 238
piecewise linear interpolation, 76
postsmoothing, 75
preconditioning, 53
presmoothing, 75
primal-dual active set method, 51
projected iterative schemes, 109
quadratic model of the objective, 97
quantum controllability, 221
quantum state transition, 227
quasi-Newton methods, 45
range space factorization, 102
recirculating flow, 127
reduced SQP, 100
reduced SQP methods, 62
regularity and approximation assumption, 82
restriction operator, 74
Riesz representation, 5
scalar product, 4
Schur-complement approaches, 102
Schur-complement splitting, 101
Schur decomposition, 102
semicoarsening in space, 144
semismooth Newton (SSN) method, 49, 164
separability framework, 3
shape optimization, 128
Sherman–Morrison–Woodbury formula, 45, 206
singular optimal control problems, 106, 142
smoothed aggregation, 86
smoothing factor, 69, 70, 91, 119, 162
smoothing property, 71, 149
Sobolev smoothing, 7
Sommerfeld’s radiation condition, 240
space-time collective smoothing multigrid (CSMG) schemes, 144
spectral radius, 68
splitting, 68
SQP methods, 59
state-constrained optimal control problems, 115, 117
steepest descent method, 43
strongly negatively coupling, 85
subspace correction (SSC or PSC) methods, 74
symbol of the full-weighting restriction, 150
TG convergence factor, 120, 151
TG Fourier analysis, 76
TG iteration matrix, 75
TG local Fourier analysis, 121, 149
time-line block-Newton relaxation, 148
time-line collective Gauss–Seidel (TL-CGS) iteration, 146
time-splitted collective Gauss–Seidel (TS-CGS) iteration linear case, 145
nonlinear case, 147
TVD scheme, 106
twogrid (TG) scheme, 75
work unit (WU), 91
Yee grid, 244