Index

advection, see convection
amplification factor, 193
Anderson acceleration, 251
antidiffusion, 203, 227, 239

balancing dissipation
anisotropic, 121, 219
isotropic, 219
modulated, 227
basis functions, 24
bilinear, 122, 124, 128
global, 90, 125
linear, 24, 121
local, 89, 121
boundary condition
Dirichlet, 12, 59, 118
implementation, 98, 138
do-nothing, 60
natural, 61
implementation, 101
Neumann, 12, 59, 118
Newton, 12, 118
no-penetration, 60
no-slip, 59, 162
radiative, 65
implementation, 106
wall law, 70
implementation, 284
boundary layer, 274, 284
boundedness, 31
Boussinesq
approximation, 56
eddy viscosity, 67

conservation
discrete, 31, 215
law, 43, 201, 211
of energy, 50
of mass, 44
of momentum, 46
consistency, 29
strong, 218
weak, 218
constitutive law, 54
Fourier, 64
Newtonian stress, 55
Reynolds stress, 67
constrained interpolation, 262
control volume, 43
convection, 185
characteristics, 185
convergence, 30
acceleration, 251
Courant number, 191, 203
Courant–Friedrichs–Lewy (CFL) condition, 192, 238
damping function, 286
degree of freedom, 16
discontinuity capturing, 199, 225
crosswind diffusion, 226
interior penalty, 227
Lapidus viscosity, 199
modulated dissipation, 227
discrete diffusion operator, 218, 228, 236
discrete upwinding, 238
de edge, 252
d effect stabilization, 227
d ef f ect-based data structures, 251–256
Elmer, 34–42
tutorials, 139–147, 162–173
equation
Burgers, 210, 272
continuity, 13, 44
convection-diffusion, 175, 184
convection-diffusion-reaction, 12
generic transport, 12
heat, 63, 78, 117
Laplace, 13
Poisson, 13, 274
pressure Poisson, 266
pure convection, 185, 194, 200
pure diffusion, 200
Schur complement, 278
equations
Navier–Stokes, 54, 265
of fluid dynamics, 53
RANS, 66, 282
Stokes, 149, 268
error
amplitude, 194
numerical, 29
phase, 194
finite element method
$k-\varepsilon$ model, 282–292
1D heat equation, 78–115
2D heat equation, 117–147
d edge-based, 217, 251
group approximation, 213, 217
Navier–Stokes equations,
147–173, 265–281
stabilized, 188–190, 217–221
flux, 10
antidiffusive, 204, 238, 241
numerical, 202, 238
flux correction
algebraic, 235–240
symmetric, 205
upwind-biased, 244
flux decomposition, 238
flux limiter, 204
total variation diminishing (TVD), 207, 245
two-parameter, 209
Index

Zalesak, 205, 230, 243
Fourier series, 193
fractional step methods, 271–281
Godunov theorem, 192, 206, 233
gradient recovery, 247
grid, see mesh
grid convergence, 31
Helmholtz decomposition, 274
inf-sup condition, see Ladyzhenskaya–Babuška–Brezzi (LBB) condition
L^2 projection, 79, 121, 247, 269
FCT-constrained, 230, 262
Ladyzhenskaya–Babuška–Brezzi (LBB) condition, 153, 269
Lapidus viscosity, 199
limited average, 208
linearity preservation, 246
linearization
antidiffusive fluxes, 241
convective term, 148
source term, 282
local extremum diminishing (LED) criterion, 233, 239
mass lumping, 187, 216
selective, 228, 230
matrix
assembly, 93, 136, 156
compressed edge storage (CES), 253
compressed row storage (CRS), 254
M-matrix, 235
mass, 110, 186, 214
monotone, 235
maximum principle
continuous, 15
discrete, 32, 179, 191, 233
semidiscrete, 232
mesh
computational, 16–18
one-dimensional, 17, 93
quadrilatraler, 128
rectangular, 122
method
artificial diffusion, 180, 218, 236
Beam–Warming, 207
Brezzi–Pitkäranta, 269
fractional step, 271
Galerkin, 25, 80, 177, 213
Galerkin least-squares (GLS), 221, 269
inexact LU, 280
interior penalty, 227, 269
Lax–Wendroff, 196, 222
modified equation, 195
monotone, 192
Newton, 150
of lines, 26
operator splitting, 200, 271
Petrov–Galerkin, 25, 183, 184, 220
Picard, 149, 249
predictor-corrector, 198, 205, 240
pressure gradient projection (PGP), 269
pseudocompressibility, 269
Richardson, 228, 279
Schur complement, 278
streamline diffusion, 220
streamline upwind, 219
streamline upwind Petrov–Galerkin (SUPG), 221
subgrid scale, 221
Taylor–Galerkin, 197, 221
two-step, 198, 224
von Neumann, 192
weighted residuals, 23
modulated dissipation, 227
modulation coefficients, 229
Navier–Stokes equations, 54, 265
axisymmetric form, 57
dimensionless form, 59
linearized, 149
Reynolds-averaged, 66
three-dimensional, 54
two-dimensional, 57
number
Courant, 191, 203
Peclet, 176
Péclet, 11
Reynolds, 59
numerical flux, 238
Beam–Warming, 207
central, 202
flux-corrected transport (FCT), 204
Lax–Wendroff, 203
Taylor–Galerkin, 203
total variation diminishing (TVD), 206
TVD, 209
upwind, 203
numerical integration, 132
operator splitting, 200, 271
Glowinski, 272
Marchuk–Yanenko, 200, 271
Strang, 201, 272
order barrier, 233
order of accuracy, 31
peak clipping, 205
Peclet number, 176
mesh, 179, 219
Péclet number, 11
positivity preservation
continuous, 15
discrete, 32, 190, 233
semidiscrete, 232
prelimiting, 243, 245
projection method
Chorin–Temam, 273
continuous, 273
discrete, 277
van Kan, 274
quadrature rule, 132
reference element, 128
Reynolds number, 59
scheme
central difference, 177, 237
defect correction, 249
flux-corrected transport (FCT), 203
element-based, 256
finite element, 240
linearized implicit, 241
nonlinear implicit, 242
high-resolution, 201–210
local extremum diminishing (LED), 233, 246
projection, 273–278
Richtmyer, 224
total variation diminishing (TVD), 206
upwind difference, 181, 189, 238
Yoshida, 281
shock capturing, see discontinuity capturing
slope limiting, 246–248
slope ratio, 207
solver, 27–29, 138
direct, 27
iterative, 27
nonlinear, 28, 248
space discretization, 18–25
finite difference, 19
finite element, 23
finite volume, 21
spurious oscillations, 177, 187
stability, 30, 192, 268
total variation, 206
stability analysis
modified equation method, 195
von Neumann method, 192
stopping criteria, 249
substantial derivative, 3, 44
test function, 23, 80, 119
modified, 184, 188, 220
Thomas
tridiagonal matrix algorithm (TDMA), 115
time discretization, 25–27
backward Euler, 26, 111
Crank–Nicolson, 26, 111
forward Euler, 26, 110
method of lines (MOL), 26
Runge–Kutta, 224
θ-scheme, 26, 186, 214
total variation, 206
total variation diminishing (TVD) criterion, 206
transport equation, 12–16
discretization, 175–264
elliptic, 13
generic, 12
hyperbolic, 13
parabolic, 14
transport phenomena, 10–12
convection, 10
diffusion, 10
triangulation, see mesh
turbulence, 66
$k–\varepsilon$ model, 68
Chien’s low Re, 286
implementation, 282
wall laws, 70, 284
turbulent dissipation rate, 68
turbulent eddy viscosity, 67
turbulent kinetic energy, 68
underrelaxation, 150
unit Courant–Friedrichs–Lewy (CFL) property, 196
upwinding
discrete, 238
first-order, 217
streamline, 219
variational problem, 24
continuous, 86
discrete, 86
weak solution, 24
weighting function, see test function