Index

ρ algorithm, 342
topological, 343
vector, 343
θ algorithm, 341
generalized, 341
vector, 342
Aitken Δ^2-process, 52
Arnoldi–Gram–Schmidt orthogonalization, 204
Bi-CG, 224–226
Cauchy–Schwarz inequality, 9
Cayley–Hamilton theorem, 7, 32
CG, 213–217
preconditioning of, 228
CGNE, 217
CGNR, 217
characteristic polynomial, 32
Chebyshev polynomials, 381
condition number, 12
CR, 213–217
Drazin inverse, 277
Drazin inverse solution, 277
E-algorithm, 328
eigenpair, 7
eigenpair derivatives, 273
iterative computation, 273
eigenvalue, 7
algebraic multiplicity of, 7
multiple, 7
defective, 7
nondefective, 7
simple, 7
eigenvector, 7
generalized, 20
eigenvectors with known eigenvalues, 266
hybrid method for, 272
PageRank vector, 268
epsilon algorithms, 99–118
scalar epsilon algorithm, see SEA
topological epsilon algorithm, see TEA
vector epsilon algorithm, see VEA
ETA2, 116
ETEA1, 116
extrapolation table, 119
FGREP, 328, 329
determinant representation of, 329
vectorized, 329
FGREP1, 330
FGREP2, 330
FGREP1, 330
determinant representation of, 330
FGREP2, 330
convergence theory for, 332
determinant representation of, 331
first generalized Richardson extrapolation process, see FGREP
FOM, 203–206
Hermitian case of three-term recursion for, 209–213
relation of GMR to, 208
short recurrence for, 219
FS-algorithm, 328
topological epsilon algorithm, see FOM
generalized inverse vector-valued Padé approximants, 305
convergence theory for, 305
determinant representation for, 307
generalized MPE, 44
GMR, 197, 200, 206–208
Hermitian case of three-term recursion for, 209–213
relation of FOM to, 208
short recurrence for, 219
GMRES, 207
Google Web matrix, 269
Gram–Schmidt orthogonalization (GS), 361
group inverse, 277
group inverse solution, 277
Henrici’s method, 42
Hölder inequality, 9
IMMPE, 349
IMPE, 348
inner product, 12
Euclidean, 13
weighted, 13
inverse power method, 391–396
with a fixed shift, 391–392
with variable shifts, 392–396
convergence theory, 393–396
ITEA, 349
iterative majorization, 280
iterative methods for linear systems, 16–27
alternating direction implicit (ADI), 24
convergence of, 17, 25
error formulas for, 19–22
Gauss–Seidel, 23
Jacobi, 23
Richardson iteration, 23
successive overrelaxation (SOR), 24
optimal SOR, 24
symmetric Gauss–Seidel, 23
symmetric SOR (SSOR), 24
iterative methods for nonlinear systems, 15
Jacobi polynomials, 385–386
Jordan canonical form, 17
Jordan factorization, 17
Krylov subspace, 197
Krylov subspace methods for eigenvalue problems, 235–259
Kaniel–Paige–Saad convergence theory, 249
method of Arnoldi, 239
method of Lanczos, 245
treatment of special eigenpairs, 250
Krylov subspace methods for linear systems, 197–230
error analysis for, 200–203
method of Arnoldi for linear systems, see FOM
method of generalized minimal residuals, see GMR
method of Lanczos, 198
vector extrapolation methods and, 198
Krylov subspace methods for nonlinear systems, 230–232
Lanczos biorthogonalization, 221–223, 245
least-squares problems, 13, 67–71
constrained, 69
unconstrained, 67
Lindstedt–Poincaré method, 319
LU factorization, 92
matrix
defective, 7
diagonal, 4
diagonalizable, 7
Hermitian, 4
Hessenberg, 5
irreducible, 14
irreducibly diagonally dominant, 14
M, 14
nondefective, 7
nondiagonalizable, 7
nonnegative, 14
normal, 4
null space of, 6
permutation, 4
positive, 14
positive definite, 8
positive semidefinite, 8
range of, 6
rank of, 6
reducible, 14
singular
Drazin inverse of, 277
group inverse of, 277
index of, 277
skew-Hermitian, 4
skew-symmetric, 4
stochastic, 268
strictly diagonally dominant, 14
symmetric, 4
trace of, 5
triangular, 5
unitary, 4
matrix functions, 320
Krylov subspaces and, 324
matrix norms, 10
Frobenius, 11
multiplicative, 10
natural, 10
$\| \cdot \|_p$-induced, 11
Schur, 11
McLeod’s theorem, 109
method of conjugate gradients, see CG
method of conjugate residuals, see CR
method of Lanczos for linear systems, 220–224
minimal polynomial, 33
with respect to a vector, 34
minimal polynomial extrapolation, see MPE
minimal residual method (MR), 196
MMPE, 42
algorithm for, 92–95
compact representation of, 55
derivation of, 42
determinant representation of, 49
error estimation for, 95
finite termination of, 45
recursion relations for, 179–180
row convergence of, 122–126
generalized, 148–151
modified Gram–Schmidt orthogonalization (MGS), 71, 364
reorthogonalization and, 365
modified minimal polynomial extrapolation, see MMPE
Moore–Penrose generalized inverse, 373–375
connection with least-squares problems, 374
SVD representation of, 374
MPE, 39
algorithm for, 71–78
compact representation of, 55
derivation of, 39
determinant representation of, 49
error bounds for simple, 156–157
via orthogonal polynomials, 158–170
error estimation for, 74
finite termination of, 45
further algorithm for, 78–81
recursion relations for, 181–183
relation of RRE to, 86–89
row convergence of, 122–127
generalized, 148–153
multidimensional scaling (MDS), 279
SMACOF, 280
iterative majorization, 280
normal equations, 13
orthogonal complement, 6
orthogonal polynomials, 377–380
Padé table, 102
PageRank vector, 268
peak-plateau phenomenon, 88, 209
Perron–Frobenius theorem, 268
polynomial extrapolation
methods, 31–64
compact representations of, 55
cycling of, 57–63
 frozen coefficients, 59
 full, 58
 parallel, 62
derivation of, 39–45
determinant representations of, 49–55
finite termination of, 45–47
minimal polynomial extrapolation, see MPE
modified minimal polynomial extrapolation, see MMPE
numerical stability of, 56
reduced rank extrapolation, see RRE
SVD-based minimal polynomial extrapolation, see SVD-MPE
power method, 389–391
preconditioning, 226
projection methods eigenvalue problems and, 233–235
 linear systems and, 191–197
QR factorization, 66, 361–366
Rayleigh quotient, 241, 387
 properties of, 387–389
Rayleigh quotient power method, 241
reduced rank extrapolation, see RRE
regular splitting, 14
Ritz pair, 235
Ritz value, 235
Ritz vector, 235
RRE, 40
 algorithm for, 71–78
 compact representation of, 55
derivation of, 40
derminant representation of, 49
error bounds for
 simple, 156–157
 via orthogonal polynomials, 158–170
error estimation for, 74
finite termination of, 45
further algorithm for, 78–81
recursion relations for, 181–183
relation of MPE to, 86–89
row convergence of, 122–127
 generalized, 148–153
stagnation of, 86
Samelson inverse, 106
SEA, 99–106
 application of, 106
 determinant representation of, 102
Shanks transformation, 100–106
 algorithms for, 103–106
 epsilon algorithm, 103
 FS/qd algorithm, 104
 simultaneous Padé approximants, 308
 convergence theory for, 310
derminant representation for, 309
directed, 310
 singular linear systems, 277
 singular value, 8, 92, 368
 singular value decomposition, see SVD
 singular vector, 92, 368
SMACOF, 280
SMMPE, 285
SMPE, 285
 compact formula for, 289
 spectral radius, 8
STEA, 285
steady-state solution, 263
steepest descent (SD) method, 196
Stein–Rosenberg theorem, 25
stochastic matrix, 268
stress function, 281
SVD, 92, 367–371
 full, 367
 reduced, 369
 SVD-based minimal polynomial extrapolation, see SVD-MPE
SVD-MPE, 43
 algorithm for, 95–98
 compact representation of, 56
derivation of, 43
derminant representation of, 49
error estimation for, 98
finite termination of, 45
Sylvester determinant identity, 179
TEA, 110–118
 implementation via ETEA1, ETEA2, 115
 implementation via STEA1, STEA2, 117
recursion relations for, 179–180
 row convergence of, 122–126
 generalized, 148–151
TEA1, 110
derminant representation of, 111
TEA2, 112
derminant representation of, 113
VEA, 106–110
derminant representation of, 107
 finite termination of, 109
vector norms, 9
 equivalence of, 9
 \(l_p \)-norms, 9
vector-valued rational approximations, 285–303, 313–325
 algebraic properties of, 290
 convergence of, 297
 derivation of, 286
derminant representations of, 287
 fixed-point iterations and, 313
 Fredholm integral equations and, 316
Krylov subspace methods for eigenvalue problems and, 314
matrix functions and, 320
 nonlinear differential equations and, 318
Lindstedt–Poincaré method, 319
reanalysis of structures and, 317
reproducing property of, 292
SMMPE, 285
SMPE, 285
STEA, 285
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector-valued rational interpolation methods, 345–357</td>
<td>development of, 345</td>
</tr>
<tr>
<td>Convergence theory for, 354</td>
<td>IMMPE, 349</td>
</tr>
<tr>
<td>Determinant representations</td>
<td>IMPE, 348</td>
</tr>
<tr>
<td></td>
<td>ITEA, 349</td>
</tr>
<tr>
<td></td>
<td>Limiting properties of, 350</td>
</tr>
<tr>
<td></td>
<td>Projection properties of, 351</td>
</tr>
<tr>
<td></td>
<td>Reproducing properties of, 353</td>
</tr>
<tr>
<td></td>
<td>Symmetry properties of, 352</td>
</tr>
</tbody>
</table>