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Chapter 3 
 

Complementary Material 
 

 
   

Lemma 3C.1 [1] If a signal : [0, ) nφ ∞ → R  is PE and satisfies φ ∞∈L , then it has the 
following properties: 

(i) Mφ , where m nM ×∈R  is a constant matrix and m n≤  is PE if and only if 
rank( )M m= .  

(ii) Given any : [0, ) ne ∞ → R  satisfying 2e ∞∈ ∩L L  and lim ( ) 0t e t→∞ = , eφ+  
is PE. 

(iii) Given a stable, minimum-phase, proper rational transfer function ( )H s , if φ  

satisfies φ ∞∈L  as well, then ( )H s φ  is PE. 
 
 
3.6.1 Gradient Algorithm with Instantaneous Cost  
 Function 
 
Proof of Theorem 3.6.1 (ii), (iii). (ii) From (3.36) we have  
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We have that 

sm
φ φ=  is PE, which means  
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for some 0 0, 0Tα >  and 0t∀ ≥ . Let us  take 0T T=  in (3C.1), (3C.2) and consider each 
term in (3C.2) separately. The first term satisfies 
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For the second term on the right-hand side of (3C.2), we use the following expressions: 
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The second term in (3C.2) with 0T T=  satisfies  
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where the inequality is obtained using the Schwarz inequality (see Chapter 2). 

Since φ ∞∈L , i.e., 0 | ( ) |supτβ φ τ≥=  is a finite constant, we have 
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(3C.4) 

Using (3C.3), (3C.4) in (3C.2) with 0T T=  we have  
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which implies that  
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Using (3C.5) in (3C.1) with 0T T= , we have  
 
 ( ) ( ) ( ) ( ) ( )0 1 11 .V t T V t V t V tγ γ+ ≤ − = −  (3C.6) 
 
Since 1 0γ >  and 0( ) 0V t T+ ≥  it follows that 10 1γ< < . (Note that 1γ  cannot be equal 
to 1  since that would imply 0( ) 0 0,V t T t+ = ∀ ≥  which is possible only when 

0( ) 0t Tθ + = , i.e., *
0( )t Tθ θ+ =  0∀ ≥ , which in turn implies that no adaptation is 

necessary.) Since (3C.6) holds for all 0t ≥  we can take ( 1)t n= − , where 
0,1,2,3, ,n = …  to obtain  
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0t nT∀ ≥ . Hence ( ) 0V t →  as t →∞  exponentially fast, which implies that  *( )tθ θ→  

exponentially fast.  
(iii) The regressor vector φ  in (3.27) is of the form  
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… … . All elements of ( )H s  are strictly 

proper with stable poles (due to stable poles of 1

( )
( ) and 

s
G s

Λ
). It can be shown (see [1, 

p. 263]) that if ( )G s  has no zero-pole cancellations, then the vectors 

1 1( ), , ( )n mH j H jω ω + +…  are linearly independent in 1n m+ +C  for any 1 2 1,  , , n mω ω ω + +…  
with i jω ω≠  for i j≠ . Applying Theorem 3.43, we have that φ  is PE if and only  if u  
is sufficiently rich of order 1n m+ + . Since u  is bounded and the plant is stable, φ , sm  
are bounded and  
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where 2

0 sup ( )sm m
τ

τ= , which implies that 
sm
φ  is PE too. Since φ  is PE it follows that 

*| ( ) | 0tθ θ− →  exponentially fast. From (3.31) we have  
T

ss m
m θ φε =− , where 

*θ θ θ= − . Since 
sm
φ

∞∈L  and ( ) 0tθ →  exponentially fast, it follows that smε  and 
therefore ε  converges to zero exponentially fast.      
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3.6.2 Gradient Algorithm with Integral Cost Function 
 
Proof of Theorem 3.6.7 (i), (ii). Since 

sm
φ

∞∈L , we immediately have ,R Q ∞∈L . There-
fore, the system behaves as an LTV system with bounded input. Substituting for  

*Tz φ θ=  in the adaptive law equations, we get 
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and, therefore, 
 
 ( ) ( ) ( ) ( ).t t R t tθ θ θ= =−Γ  (3C.8) 
 
Consider the Lyapunov-like function  
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The time derivative of V  satisfies 
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Since 0V >  and 0V ≤ , we have , ,V θ θ ∞∈L . Integrating both sides of (3C.9), we es-
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Since  ( ) ( ) ( ) 0lim T
t t R t tθ θ→∞ =  and 

1
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0
sm dε τ

∞
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2smε ∈L . Hence, the proof of (i),(ii) is complete.  
 
 (iii) Since φ  is PE and sm  is bounded, using (3C.7) we have 
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for any 0t T≥ , where 1 0 0 0Tβ α α= , 2

00 ( ),inf t sm tα −
≥=  and 0 0 0Tα , >  are constants 

given in the definition of PE. Therefore, (3C.9) implies that 
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which implies that ( )tθ θ∗→  as t →∞  exponentially fast with the rate 2

α . For IγΓ= , 
the rate of convergence is given by 
 

0
12 ,Te βα β γ −=  

 
which can be made arbitrarily large by increasing the value of γ .   
 The proof of (iv) is included in the proof of Theorem 3.6.1 and is thus omitted.    
 
3.7.1 Recursive LS Algorithm with Forgetting Factor 
 
Proof of Theorem 3.7.1 [1]. Denoting 1( ) ( )t P t−Γ = , it follows from (3.45) that 
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0t T∀ ≥ , where 2

00 ( )inf t sm tα −
≥= , 1 0 0 0Tβ α α= , and 0 0, 0Tα >  are constants given in 

the definition of PE. For 0t T≤ , we have  
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Hence, 1( ) ( )P t P t−

∞, ∈L . Exponential convergence of ( )tθ  to θ∗  as t →∞  can be es-
tablished applying the procedure and arguments used in the proof of Theorem 3.6.1.     
 
 
3.7.3 Modified LS Algorithms 
 
Proof of Theorem 3.7.4. For the pure LS algorithm with covariance resetting (3.47), the 
covariance matrix ( )P t  has elements that are discontinuous functions of time whose val-
ues between discontinuities are defined by the differential equation (3.47). At the discon-
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 Between resetting points we have from (3.47) that 
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Because 

2 2

2 0smV ε≤− ≤  and ( )P t  is bounded and positive definite for all 0t ≥ , the rest 
of the analysis for the proof (i) is exactly the same as above. (ii) and (iii) can be proven 
using exactly the same procedure and arguments as in the proof of Theorem 3.6.1.      
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3.8 Parameter Identification based on DPM 
 
Proof of Theorem 3.8.1 (ii). In proving part (i), we have shown that the time derivative 
V  of 
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and associate ( )TC A KC, +  with the system  
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Since the UCO property of the system (3C.16) implies the UCO of ( )TC A KC, +  be-
cause of Lemma A.8.5, the result follows.       
 
 
3.9 Parameter Identification based on B-SPM 
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Now (3C.17) can be rewritten as  
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τ φ τ τ φ τ τ φ τ τ

φ τ τ τ φ τ τ

+ +

+ +

= + −

≥ − −

∫ ∫

∫ ∫
(3C.21) 

 
The PE property of φ  implies that  
 

( ) ( )
0

0 0

t T

T

t

d T Iφ τ φ τ τ α
+

≥∫  

 
for some 0 0 , 0Tα >  and 0t∀ ≥ . Let us  take 0T T=  in (3C.20), (3C.21). The first term 
on the right-hand side of (3C.21) satisfies 
  

 
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0
2

0
0 0 0 min

1 1
 

2 2

     .
2

t T t T

T T T

t t

T
x

x t d x t d x t

T x t x t T V t

φ τ τ φ τ φ τ τ

α
α λ

+ +

=

≥ ≥ Γ

∫ ∫
 (3C.22) 

 
Let us consider the second term on the right-hand side of (3C.21) . We start with 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* T

t t t

x x t x d A x d x d
τ τ τ

θτ σ σ σ σ σ ρ σ φ σ φ σ σ− = = Γ =− Γ∫ ∫ ∫  

 
and obtain 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )* .
T T T

t

x x t x d
τ

τ φ τ ρ σ φ σ φ τ φ σ σ⎡ ⎤− =− Γ⎣ ⎦ ∫  

 
Therefore, for 0T T=  the second term on the right-hand side of (3C.21) satisfies  
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

0

0

2
2

*

2 2 2*                                             .

ot T t T
T T T

t t t

t T

T T

t t t

x x t d x x d d

d x d d

τ

τ τ

τ φ τ τ ρ σ φ σ φ τ σ σ τ

ρ φ τ φ σ σ σ φ σ σ τ

+ +

+

⎛ ⎞⎟⎜ ⎟⎡ ⎤ ⎜− = Γ ⎟⎜⎣ ⎦ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞⎟⎜ ⎟⎜≤ Γ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫
 

 
Since φ ∞∈L , i.e., 0 ( )supφ τβ φ τ≥=   is a finite constant, we have 
 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

0 0

0 0

2 2 2* 4 2
max

2 2* 4 2
max

2* 4 2
max

                                              

                                              

t T t T
T T

t t t

t T t T

T

t

T

x x t d t x d d

x t d d

x

τ

φ

φ

σ

φ

τ φ τ τ ρ β λ τ σ φ σ σ τ

ρ β λ σ φ σ τ τ σ

ρ β λ σ φ σ

+ +

+ +

− ≤ Γ −

= Γ −

= Γ

∫ ∫ ∫

∫ ∫

( )

( )
( ) ( )( )

0

0

22
2 0

2* 4 2 2
2max 0

  
2

                                              .
2

t T

t

t T

T

t

T t
d

T
x d

φ

σ
σ

ρ β λ
σ φ σ σ

+

+

⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

Γ
≤

∫

∫

(3C.23) 

 
 
Using (3C.22), (3C.23) in (3C.21) with 0T T= , we have  
 

( ) ( )( ) ( ) ( )
( )

( ) ( )( )
0 0

2* 4 2 2
2 2max 0

0 0 min ,
2

t T t T
T T

x

t t

T
x d T V t x d

φρ β λ
τ φ τ τ α λ τ φ τ τ

+ +Γ
≥ Γ −∫ ∫  

 
which implies that  
 

 ( ) ( )( ) ( )

( )
( ) ( )

0 2
0 0 min

12* 4 2 2
max 0

2
,

2

t T
T

x x

t

T
x d V t V t

Tφ

α λ
τ φ τ τ γ

ρ β λ

+ Γ
≥ =

+ Γ
∫  (3C.24) 

 
where 0 0 min

2* 4 2 2
max 0

2 ( )
1

2 ( )

T

Tφ

α λ

ρ β λ
γ Γ

+ Γ
= . Using (3C.24) in (3C.20) with 0T T= , we have  

 
( ) ( )0 1(1 )  0;x xV t T V t tγ+ ≤ − ∀ ≥  

i.e., 
 

( ) ( ) ( ) ( )( ) ( ) ( )0 1 0 1 01 1 1 0  ,  1,2, .
n

x x x xV t V nT V n T V t nT nγ γ≤ ≤ − − ≤ ≤ − ∀ ≥ = …  
 
Since 1 0γ >   and 0( ) 0xV t T+ >  for 0x ≠  it follows that 10 1γ< < , and hence 

( ) 0V t →  as t →∞  exponentially fast, which implies that  ( ) 0x t →  as t →∞  expo-
nentially fast; i.e., the transition matrix 0( , )t tΦ  of (3C.18) satisfies 
 

0( )
0( , ) t tt t e γα − −Φ ≤  
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for some constants , 0α γ > . Since the homogeneous part of (3C.21) is e.s. and its in-

put 2ξ ∞∈ ∩L L , it follows from the results of the Appendix that ( ) 0tθ →  as  
t →∞ .      
 
3.12.4  Dead Zone 
 
Proof of Theorem 3.12.4 [1]. (i) As before, we consider the Lyapunov-like function  
 

( )
1

.
2

T

V
θ θ

θ
−Γ

=  

 
Using 2 T

smε θ φ η=− + , the time derivative of V  along the solution of  (3.103) is de-
rived as  
 
 ( ) ( )( )2 .T

sV g m gθ φ ε ε η ε= + =− − +  (3C.25) 
 
Since 
 

( )( )

( ) ( )

( ) ( )

2

0 0 0 0

22
0 0 0 0

0 if   , 

0 if   , 

0 otherwise,

s s s
s

s s s s
s

m g g m g m g
m

m g m g g m g m g
m

η
ε ε ε

η
ε η ε ε ε ε

⎧ ⎛ ⎞⎪ ⎟⎪ ⎜ ⎟+ − + + > <−⎪ ⎜ ⎟⎜⎪ ⎟⎜⎪ ⎝ ⎠⎪⎪⎪ ⎛ ⎞⎨ ⎟⎜⎪ ⎟− + = − + − − > >⎜⎪ ⎟⎜⎪ ⎟⎜⎝ ⎠⎪⎪⎪⎪⎪⎩

  

     (3C.26) 

 
we have 2( )( ) 0sm gε η ε− + ≥  and hence 0V ≤ , which implies that , , , , ,sV mθ θ ε ε  

θ ∞∈L and 2
2( )( )sm gε η ε− + ∈ L .  

(ii), (iii) From (3.103) we have  
 

 ( )2 2
2

,
T

T
s

s

g m
m

φ φ
θ θ ε

ΓΓ
= +  (3C.27) 

 
where 
 

( ) ( )
( )
( )

2

0 0

2 2 22
0 0

0 0

if   , 

if   , 

0 if  .

s s

s s s s s

s

m g m g

g m m gm m g m g

g m g

ε ε

ε ε ε ε
ε

⎧⎪ + <−⎪⎪⎪⎪⎨+ = + = − >⎪⎪⎪ − ≤ ≤⎪⎪⎩

 

  


 

 
(3C.26) and (3C.27) imply that 2 2 2

20 ( ) ( )( ),   i.e., ( )s s sg m m g g mε ε η ε ε≤ + ≤ − + + ∈L  

and hence 2θ ∈L , since 
sm
φ

∞∈L . Now (3C.25) can be rewritten as 
 

2
0 0s s s

s s

V m m m g g
m m

η η
ε ε ε≤− + + +2    

 
using 0

s

g

mg ≤ . Completing the squares, we obtain  
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2
2
0 02

2
2
02

2

3 3
   ,

2 22

s

s

s

s

m
V g g

mm

m
g

m

η ηε

ηε

≤− + + +

≤ − + +

2

2
 

 
which together with V ∞∈L  implies that ( )2

2

2
0

s
s m

m g ηε ∈ + S . Since 0| | (| | )sm gθ ε≤ +  

because of the inequality 0

1 0| | ,
s

g

mg c g≤ ≤  we can conclude that ( )2

2

2
0

sm
g ηθ ∈ +S . Since 

0g  is a constant, we equivalently have ( )2

20,
s

s m
m g ηε θ ∈ + S . 

 
Using (3C.25) and the fact that 2( )( ) 0sm gε η ε− + ≥ , we obtain  

 

( )( )

( )

2

0 0

       

        because 0 if .

s s s
s

s s
s

s s
s

V m g m g m
m

m g m
m

g g m g m g
m

η
ε η ε ε ε

η
ε ε

η
ε ε ε

≤− − + =− − +

≤ − − +

≤ − − + + = ≤

 





 

 
Since 

sm

η
∞∈L  and 0 smg

η> , integrating both sides of the inequality and using the fact 

that V ∞∈L , we get 1( ) sg mε+ ∈ L , which together with (3.103) and the fact that 

m
φ

∞∈L  implies 1θ θ= ∈L .  

(iv) 1θ ∈L  implies that the 
0

lim
t

t dθ τ→∞ ∫  exists and therefore θ  converges to 

some constant vector, .θ  
(v) We express (3.103) in terms of the parameter error as 

 

 
2 2

,
T

s s

g
m m

φφ φη
θ θ φ=−Γ +Γ +Γ  (3C.28) 

 
where g  satisfies 0

1 0| |
s

g

mg c g≤ ≤  for some constant 1 0c ≥ . The homogeneous part of 

(3C.28) is e.s. when smφ  is PE, as established in section 3.4. The exponential conver-

gence of θ  to the given residual set dD  can be established using the same arguments as 
in the proof of  Theorem 3.12.2 (iv).      
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3.16 Examples Using the Toolbox 
 
3.16.1 Gradient Algorithm 
 
The Adaptive Control Toolbox uses several MATLAB functions to implement the gradi-
ent algorithms introduced in the previous subsections. The MATLAB function ucgrad* 
can be used to simulate the gradient algorithm with instantaneous cost function, (3.34), as 
shown in Examples 3.16.1 and 3.16.2. 

 
Example 3.16.1  Consider the signal 
 
 cos( ),y A tω ϕ= +  (3C.29) 

 
which is broadcast with a known frequency ω  but an unknown phase ϕ  and an unknown 
amplitude .A  Assuming that the signal y  is available for measurement, our objective is 
to estimate   and A ϕ  using the knowledge of ω  and measurements of .y  First, we need 
to transform (3C.29) into the linear parametric form (3.27). Using the identity 
 

cos( ) cos cos sin sin ,A t A t A tω ϕ ϕ ω ϕ ω+ = −  
 
we obtain 
 

*Ty θ φ=  
 

with *
1 2[ ,  ]TA Aθ =  and ( ) [cos ,  -sin ]Tt t tφ ω ω= , where 1 cosA A ϕ=  and 2 sinA A ϕ= . 

Now, *θ  can be estimated as 1 2
ˆ ˆ[ ,  ]TA Aθ =  using (3.34), i.e., 

 
θ εφ= Γ , 

2 2

ˆ T

s s

y y y

m m

θ φ
ε

− −
= = . 

 
Since φ ∞∈L , we can take the normalizing signal 1sm = . Once *θ  is estimated as 

1 2
ˆ ˆ[ ,  ]TA Aθ = , we can obtain the estimates of  and A ϕ  as 

 

2 2 1 1
1 2

ˆ
ˆ ˆ ˆ ˆ  and cos

ˆ
A

A A A
A

ϕ −
⎛ ⎞⎟⎜ ⎟⎜= + = ⎟⎜ ⎟⎟⎜⎝ ⎠

. 

 
Now, assume that 3,   25 0.436 rad for 0 10 secA tϕ= = = ≤ ≤ , 5,A =  35ϕ= =  
0.611 rad for 10 sec,t >  and 5 rad/secω = . Let us choose the adaptive gain Γ  as the 
identity matrix. We can use ucgrad to obtain the estimates of the parameters online as 
follows: 

                                                           
* For details about this command,  refer to the toolbox manual—B. Fidan and P. A. Ioannou, Adaptive Control 
Toolbox for Use with MATLAB and Simulink: User’s Guide (available from the authors), 2006.  
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t_final = 20; 
dt = 0.01; 
t = 0:dt:t_final; 
N_10 = 10/dt+1; 
N_final = t_final/dt+1; 
A = [3*ones(1,N_10), 5*ones(1,N_final-N_10)]; 
phi = [0.436*ones(1,N_10), 0.611*ones(1,N_final-N_10)]; 
omega = 5; 
theta = [0, pi/2]; 
[nx, x] = ucgrad('init', theta, [], [], []); 
for n_step = 1:N_final, 
   omegat = omega*t(n_step); 
   y(n_step)= A(n_step)*cos(omegat+phi(n_step)); 
   yt = y(n_step); 
   phit = [cos(omegat) -sin(omegat)]'; 
   dx = ucgrad('state',x,yt,phit,[],0,1,[],0,[],[],[]);  
   x = x + dx*dt; 
   theta = ucgrad('parameter',x,2,0); 
   Ahat(n_step) = sqrt(theta(1)^2+theta(2)^2); 
   phihat(n_step) = acos(theta(1)/Ahat(n_step)); 
   yhat(n_step)= Ahat(n_step)*cos(omegat+phihat(n_step)); 
end 
 
Here, the initial values of the estimates are taken to be 1 2 2

ˆ ˆ(0) 0 and (0)A A π= = , and the 
Euler approximation is used for solving the differential equations. The results are shown 
in Figure 3C.1. More accurate results can be obtained using the Runge–Kutta or the 
Dormand–Prince method. This can be performed using  the Simulink block Parameter 
Estimator in the scheme drawn in Figure 3C.2. In this Simulink scheme, the two sine-
signal sources at the top and the switch are for the simulation of the broadcasting signal, 
and the bottom two are for generation  of the regressor signal φ .  The parameters of the 
Parameter Estimator can be entered by clicking on it and choosing the continu-
ous-time linear gradient scheme with the model order 2n = , the initial parameter 

1 2[ (0),  (0)] [0,  1.571]θ θ = , and the adaptive gain 1 0

0 1

⎡ ⎤Γ = ⎢ ⎥
⎣ ⎦

.       

 
Example 3.16.2 Consider the plant 

1 0
2 2 1

b s b
y u

s s

+
=

+ +
, 

 
where the parameters 1 0 and b b  are unknown.  The plant equation can be rewritten in the 
linear parametric model as 
 

* ,Ty θ φ=  
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Figure 3C.1 Actual and estimate values of the amplitude A , the phase ϕ , and the 

output signal y  in Example 3.16.1. 
 

 
Figure 3C.2 Simulink scheme for estimating the broadcast signal in Example 3.16.1. 
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where [ ]*
1 0,  

T
b bθ =  and 2 2

1

2 1 2 1
,  

T
s

s s s s
u uφ

+ + + +

⎡ ⎤= ⎢ ⎥⎣ ⎦
.  Let the actual values of the pa-

rameters be 1 2b =  and 0 1.2b = , and let the input signal of the system be 

7( ) sin( ) 0.5cos2u t t tπ= + + . Let us use the gradient algorithm 
 

2 2

,

ˆ T

s s

y y y

m m

θ εφ

θ φ
ε

= Γ

− −
= =

 

 
for estimation. Choosing the initial value of the parameter estimate as (0) [0,  0]Tθ = , the 

adaptive gain as 10 0

0 10

⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

Γ = , and the normalizing signal as 2 1 0.1 T
sm φ φ= + ,  we use the 

function ucgrad as follows: 
 
t_final = 50; 
dt = 0.05; 
t = 0:dt:t_final; 
N_final = t_final/dt+1; 
b = [2 1.2]; 
a = [1 2 1]; 
u = sin(t+pi/7) + 0.5*cos(2*t); 
theta(:,1) = [0, 0]'; 
y(1) = 0; 
% Estimation parameters:  
[nx_est, x_est] = ucgrad('init', theta(:,1), [], [], []); 
% Transfer function parameters: 
[nx_tf, x_tf] = ufilt('init',b,a,0); 
% Linear model parameters: 
[nx_phi1, x_phi1] = ufilt('init',[1 0],a,0); 
[nx_phi2, x_phi2] = ufilt('init',1,a,0); 
 
for n_step = 2:N_final, 
   dx_tf = ufilt('state',x_tf, u(n_step-1), b, a); 
   x_tf = x_tf + dx_tf*dt; 
   y(n_step)= ufilt('output',x_tf, u(n_step), b, a); 
   dx_phi1 = ufilt('state',x_phi1, u(n_step-1), [1 0], a); 
   x_phi1 = x_phi1 + dx_phi1*dt; 
   phi1 = ufilt('output',x_phi1, u(n_step), [1 0], a); 
   dx_phi2 = ufilt('state',x_phi2, u(n_step-1), 1, a); 
   x_phi2 = x_phi2 + dx_phi2*dt; 
   phi2 = ufilt('output',x_phi2, u(n_step), 1, a); 
   phi = [phi1 phi2]'; 
   dx_est = ucgrad('state',x_est,y(n_step),phi,... 
            [],0,10,[],0.1,[],[],[]);  
   x_est = x_est + dx_est*dt; 
   theta(:,n_step) = ucgrad('parameter',x_est,2,0); 
   yhat(n_step)= theta(:,n_step)'*phi; 
end 
 
The results are plotted in Figure 3C.3. Alternatively, one can use the linear model (3.27) 
and reduce the dimension of the parameter vector using the knowledge of 1 0 and a a  to 
obtain  
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* ,Tz θ φ=  
 
where 

 

[ ]

2

*
1 0

2 1
,

( )

,  ,

1
,  .

( ) ( )

T

T

s s
z y

s

b b

s
u u

s s

θ

φ

+ +
=

Λ

=

⎡ ⎤
⎢ ⎥=
⎢ ⎥Λ Λ⎣ ⎦

 

 
Choosing the filter polynomial as 2( ) ( 2)s sΛ = + , the functions utf2lm, lmred, and 
ucgrad can be used for this purpose as follows: 
 
t_final = 50; 
dt = 0.05; 
t = 0:dt:t_final; 
N_final = t_final/dt+1; 
b = [2 1.2]; 
a = [1 2 1]; 
u = sin(t+pi/7) + 0.5*cos(2*t); 
theta(:,1) = [0, 0]'; 
y(1) = 0; 
 
n = 2; m = 1; 
Lambda = [1 4 4]; 
P = lmred('tf', [n m], [1 0], [2 1], [], []); 
% Estimation parameters:  
[nx_est, x_est] = ucgrad('init', theta(:,1), [], [], []); 
% Transfer function parameters: 
[nx_tf, x_tf] = ufilt('init',b,a); 
% Linear model parameters: 
[nx_lm, x_lm] = utf2lm('init',[n m], Lambda); 
[z, phi] = utf2lm('output',x_lm, [u(1) y(1)], [n m], 
Lambda); 
[zr(1), phir(:,1)] = lmred(z,phi,P); 
 
for n_step = 2:N_final, 
   dx_tf = ufilt('state',x_tf, u(n_step-1), b, a); 
   x_tf = x_tf + dx_tf*dt; 
   y(n_step)= ufilt('output',x_tf, u(n_step), b, a); 
   dx_lm = utf2lm('state',x_lm, [u(n_step-1) y(n_step-1)], 
[n m], Lambda); 
   x_lm = x_lm + dx_lm*dt; 
   [z, phi] = utf2lm('output',x_lm,[u(n_step) y(n_step)], 
[n m], Lambda); 
   [zr(n_step), phir(:,n_step)] = lmred(z,phi,P); 
   dx_est =ucgrad('state',x_est,zr(n_step),phir(:,n_step),... 
      [],0,10,[],0.1,[],[],[]);  
   x_est = x_est + dx_est*dt; 
   theta(:,n_step) = ucgrad('parameter',x_est,2,0); 
   zhat(n_step)= theta(:,n_step)'*phir(:,n_step); 
end 
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The results for the alternative method are shown in Figure 3C.4. The same results could 
be obtained using the Simulink scheme depicted in Figure 3C.5, with appropriate selec-
tions in the menus of the blocks Parametric Model*, Parameter Estimator*, 
and Model Reduction*.      
 

 
Figure 3C.3 Simulation results for Example 3.16.2. 

 
 

                                                           
* For details about this block, refer to the toolbox manual.  
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Figure 3C.4 Simulation results for Example 3.16.2 with alternative parameterization. 

 
 

 
 

Figure 3C.5 Simulink scheme for parameter estimation in Example 3.16.2. 
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Example 3.16.3 Consider the mass–spring–dashpot system  
 

Mx u kx fx= − −  
 
of Example 2.1, where , ,  and M f k  denote the mass of the system, the damping coeffi-
cient, and the spring constant, respectively. Assume that 0.1 kg / secf = , 

25 kg / seck = , 20 kgM =  and  2
7 50.1cos 0.05sin   kg m/secu t tπ π= + .  Let M  be 

known, and let  and f k  be  the unknown parameters to be estimated online. The system 
equation can be rewritten in the transfer function form 
 

0
2

1 0

,
b

x u
s a s a

=
+ +

 

 
where 
 

0 1 0

1
,  ,  .

f k
b a a

M m M
= = =  

 
Since M  is known, 0b  is also known, and the following reduced-order linear parametric 
model can be used for parameter identification purposes:  
 

* ,Tz θ φ=  
 

where 
 

[ ]

2
0

*
1 0

,
( ) ( )

,  ,

1
,  .

( ) ( )

T

T

bs
z y u

s s

a a

s
y y

s s

θ

φ

= −
Λ Λ

=

⎡ ⎤
⎢ ⎥= − −
⎢ ⎥Λ Λ⎣ ⎦

 

 
Let us choose 2( ) 2 1,s s sΛ = + +  and let us use the gradient algorithm 
 

2 2

,

ˆ T

s s

z z z

m m

θ εφ

θ φ
ε

= Γ

− −
= =

 

 
with the initial parameter estimate [ ](0) 0,  0

T
θ = , the adaptive gain 25IΓ= , and the 

normalizing signal 2 1 0.1 T
sm φ φ= + . For implementation and simulation, we use the 

Simulink scheme shown in Figure 3C.6 with appropriate selections in the menus of the 
blocks Parametric Model*, Parameter Estimator*, and Model Reduc-
tion*. The results plotted in Figure 3C.7 indicate that the parameter estimates converge 
to their actual values, i.e., parameter identification is successful.       
 

                                                           
* For details about this block, refer to the toolbox manual.  
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Figure 3C.6 Simulink scheme for estimating the coefficients of the mass–spring–
dashpot system in Example 3.16.3. 
 
 

 
Figure 3C.7 Simulation results for Example 3.16.3. 

 
The Simulink block Parameter Estimator can be used to simulate the gradient 
algorithm with integral cost function as well, as demonstrated in the examples below. 
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Example 3.16.4 Consider the broadcast signal of Example 3.16.1 keeping the parameter 
values the same. Let us perform the parameter estimation using  the gradient algorithm 
with integral cost function. The Simulink block Parameter Estimator* may be 
used to perform the simulations as before. Entering the model order, the forgetting factor 

0.1β = ,  the initial parameter vector, and the gain of Example 3.16.1, the results shown 
in Figure 3C.8 are obtained.       
 
Example 3.16.5 Consider the mass–spring–dashpot system of Example 3.16.3 keeping 
the parameter values the same. We will perform the parameter estimation using  the gra-
dient algorithm with integral cost function. Entering the model order, the initial parameter 
vector, and the gain in the Simulink block Parameter Estimator*  as in  Example 
3.16.3 and choosing the forgetting factor 0.1β = , the results shown in Figure 3C.9 are 
obtained.       

 
 

 
Figure 3C.8 Actual and estimate values of the amplitude A , the phase ϕ , and the 

output signal y  in Example 3.16.4. 
 
 

                                                           
* For details about this block,  refer to the toolbox manual.  
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Figure 3C.9 Simulation results for Example 3.16.5. 

 
3.16.2 LS Algorithm 
  
The MATLAB functions ucrls* and urlsarg* or the Simulink  block Parameter 
Estimator can be used to simulate any of the four LS algorithms described by (3.45)–
(3.48), as demonstrated in Examples 3.16.6 and 3.16.7. 
 
Example 3.16.6 Consider Example 3.16.1 with the same parameter values. Let us per-
form the same parameter estimation task using a recursive LS algorithm with forgetting 
factor, pure LS algorithm, and pure LS algorithm with covariance resetting. For the re-
cursive LS algorithm with forgetting factor 1β = , we use ucrls and urlsarg to 
obtain the estimates of the parameters online as follows: 
 
t_final = 20; 
dt = 0.01; 
t = 0:dt:t_final; 
N_10 = 10/dt+1; 
N_final = t_final/dt+1; 
A = [3*ones(1,N_10), 5*ones(1,N_final-N_10)]; 
phi = [0.436*ones(1,N_10), 0.611*ones(1,N_final-N_10)]; 
omega = 5; 
theta = [0, pi/2]; 
rho0 = 1; 
P0 = rho0*eye(2); 
ArgLS = urlsarg('constant forgetting', 1);  
[nx, x] = ucrls('init', theta, P0, ArgLS); 
for n_step = 1:N_final, 
   omegat = omega*t(n_step); 
   y(n_step)= A(n_step)*cos(omegat+phi(n_step)); 

                                                           
* For details about this command,  refer to the toolbox manual.  
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   yt = y(n_step); 
   phit = [cos(omegat) -sin(omegat)]'; 
   dx = ucrls('state',x,yt,phit,0,ArgLS,[],[]);  
   x = x + dx*dt; 
   x = ucrls('update',x,[],ArgLS); 
   theta = ucrls('parameter',x,2); 
   Ahat(n_step) = sqrt(theta(1)^2+theta(2)^2); 
   phihat(n_step) = acos(theta(1)/Ahat(n_step)); 
   yhat(n_step)= Ahat(n_step)*cos(omegat+phihat(n_step)); 
end 
 
Note that the type and parameters of the LS algorithm are defined on the line ArgLS = 
urlsarg('constant forgetting', 1);. This line should be changed to 
ArgLS = urlsarg('pure'); to apply a pure LS algorithm and to ArgLS = 
urlsarg('size', 1, 0.3);  to apply a pure LS algorithm with covariance reset-
ting ( 0 11, 0.3ρ ρ= = ). For the three methods, the initial covariance matrix is chosen as 

0
1 0

0 1
P

⎡ ⎤= ⎢ ⎥
⎣ ⎦

, the initial values of the estimated parameters are taken to be 

1 2 2
ˆ ˆ(0) 0  and  (0)A A π= = , and the Euler approximation is used for differential equations 

as in Example 3.16.1. The results are plotted in Figures 3C.10, 3C.11, and 3C.12. As in 
the gradient algorithm case (Example 3.16.1), the Simulink block Parameter Esti-
mator can also be used for simulation. We can use the scheme of Figure 3C.2 (de-
scribed in Example 3.16.1) here, changing the entries of the Parameter Estimator*   
block appropriately.       

 
Figure 3C.10 Actual and estimate values of the amplitude A , the phase ϕ , and the 

output signal y  in Example 3.16.6 using a recursive LS algorithm with forgetting factor. 
 

                                                           
* For details about this block,  refer to the toolbox manual.  
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Figure 3C.11 Actual and estimate values of the amplitude A , the phase ϕ , and the 

output signal y  in Example 3.16.6 using a pure LS algorithm. 
 

 
Figure 3C.12 Actual and estimate values of the amplitude A , the phase ϕ , and the 

output signal y  in Example 3.16.6 using a pure LS algorithm with covariance resetting. 
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Example 3.16.7 Consider the mass–spring–dashpot system of Example 3.16.3 with the 
same parameter values. Let us use the recursive LS algorithm with constant forgetting 
factor for estimating the parameters. Let us  choose the algorithm parameters as 0.5β = , 

0
10 0

0 10
P

⎡ ⎤= ⎢ ⎥
⎣ ⎦

, and 0

0
(0)θ ⎡ ⎤= ⎢ ⎥

⎣ ⎦
. We use the Simulink scheme of Figure 3C.5, changing the 

entries of the block Parameter Estimator* appropriately while keeping  Model 
Reduction* the same. The results are shown in Figure 3C.13.  

Trying different forgetting factors and different initial covariance values, one can 
easily see that increasing the initial covariance values and the forgetting factor increases 
the speed of convergence at the expense of some transient.       
 

 
Figure 3C.13 Simulation results for Example 3.16.7. 

 
 
3.16.3 Parameter Projection 
 
The MATLAB function uparproj* can be used with ucgrad, or the Simulink  block 
Parameter Estimator, and appropriate projection parameters to simulate the gradi-
ent algorithm with parameter projection, (3.58), as shown in Examples 3.16.8 and 3.16.9. 
The gradient algorithm with projection given by (3.58) may be simulated using the Simu-
link  block Parameter Estimator, with appropriate projection parameters as dem-
onstrated in Example 3.16.8. 

                                                           
* For details,  refer to the toolbox manual.  
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Example 3.16.8  Consider the plant 
 

1 0
2

1 0

b s b
y u

s a s a

+
=

+ +
, 

 
where the unknown coefficients 1 0 1 0,  ,  , and b b a a  are to be estimated.  The plant is  re-
written in the form of the linear parametric model as 
 

*Tz θ φ= , 
 
where *

1 0 1 0[ ,  ,  ,  ]Tb b a aθ = , 1 1
( ) ( ) ( ) ( )[ ,  ,  ,  ]Ts s
s s s su u y yφ Λ Λ Λ Λ= − − , 2

( )
s

sz yΛ= ,  and 
2( ) ( 2)s sΛ = + . For simulation purposes let 1 0.6a = , 0 8.5a = , 1 2.6b = , and 0 2.0b = , 

and the input signal 7( ) sin( )u t t π= + , and use the gradient algorithm with instantaneous 
cost function described in section 3.6 with the initial parameter estimate vector 

(0) [2.75,  3,  1.25,  6]Tθ = , the adaptive matrix 4100 IΓ= , and the normalizing signal 
2 1 0.1 T
sm φ φ= + . As seen in the simulation results shown in Figure 3C.14, the parameter 

estimates do not converge to the actual values, and the estimation errors are significant. 
 

 
Figure 3C.14 Simulation results for Example 3.16.8 using the gradient algorithm 

without projection. 
 

Let us now assume that we know that the parameter vector θ  lies in the compact set 
0 4

1 2 3 4{ 2.5 3,  1.5 4.5,  0.5 2,  3 9}S θ θ θ θ θ= ∈ℜ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ . Based on this as-
sumption, we can incorporate uparproj with ucgrad for parameter estimation as fol-
lows: 
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t_final = 50; 
dt = 0.05; 
t = 0:dt:t_final; 
N_final = t_final/dt+1; 
b = [2.6 2]; 
a = [1 0.6 8.5]; 
u = sin(t+pi/7); 
theta(:,1) = [2.75, 3, 1.25, 6]'; 
y(1) = 0; 
 
n = 2; m = 1; 
Lambda = [1 4 4]; 
PJ = uparproj('hyperplane', [1 2 3 4],[2.5 1.5 0.5 3], [3 
4.5 2 9]); 
% Estimation parameters:  
[nx_est, x_est] = ucgrad('init', theta(:,1), [], [], []); 
% Transfer function parameters: 
[nx_tf, x_tf] = ufilt('init',b,a); 
% Linear model parameters: 
[nx_lm, x_lm] = utf2lm('init',[n m], Lambda); 
[z(1), phi(:,1)] = utf2lm('output',x_lm, [u(1) y(1)], [n 
m], Lambda); 
for n_step = 2:N_final, 
   dx_tf = ufilt('state',x_tf, u(n_step-1), b, a); 
   x_tf = x_tf + dx_tf*dt; 
   y(n_step)= ufilt('output',x_tf, u(n_step), b, a); 
   dx_lm = utf2lm('state',x_lm, [u(n_step-1) y(n_step-1)], 
[n m], Lambda); 
   x_lm = x_lm + dx_lm*dt; 
   [z(n_step), phi(:,n_step)] = 
utf2lm('output',x_lm,[u(n_step) y(n_step)], [n m], Lambda); 
   dx_est = 
ucgrad('state',x_est,z(n_step),phi(:,n_step),... 
      [],0,10,[],0.1,[],[],[],[],PJ);  
   x_est = x_est + dx_est*dt; 
   x_est = ucgrad('update',x_est,4,0,PJ); 
   theta(:,n_step) = ucgrad('parameter',x_est,4,0); 
   zhat(n_step)= theta(:,n_step)'*phi(:,n_step); 
end 
 

As shown in Figure 3C.15, employing parameter projection, parameter estimation 
gives more successful results. This parameter estimation task could also be implemented 
using the Simulink block Parameter Estimator* with appropriate menu selec-
tions.       
 
 
 

 
 
 
 

                                                           
* For details about this block,  refer to the toolbox manual.  
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Figure 3C.15 Simulation results for Example 3.16.8 using the gradient algorithm 

with projection. 
 

The MATLAB function uparproj incorporated with ucrls and urlsarg, or the 
Simulink  block Parameter Estimator, with appropriate projection parameters, can 
be used to simulate (3.59), as shown in Example 3.16.9. 
 
Example 3.16.9  Let us use the recursive LS algorithm with forgetting factor instead of 
the gradient algorithm for Example 3.16.8. Let the initial covariance matrix be 

0 4100 IP =  and the forgetting factor 0.7β = . We use Simulink by making appropriate 
changes in the entries of the block Parameter Estimator, or by modifying the 
MATLAB code given in Example 3.16.8 using the following lines at appropriate places: 
 
ArgLS = urlsarg('constant forgetting', 0.7); 
[nx_est, x_est] = ucrls('init', theta(:,1), 100*eye(4), 
ArgLS); 
 
dx_est = 
ucrls('state',x_est,z(n_step),phi(:,n_step),0,ArgLS,[],PJ);  
 
x_est = ucrls('update',x_est,PJ,ArgLS); 
 
theta(:,n_step) = ucrls('parameter',x_est,4); 
 
 
Parameter estimation is much better in terms of both the estimation error and the conver-
gence rate, as shown in Figure 3C.16.       
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Figure 3C.16 Simulation results for Example 3.16.9. 

 
 

 
3.16.4 Robust Parameter Identification 
 
The MATLAB function urobust can be incorporated with ucgrad, or, as before, the 
Simulink block Parameter Estimator with appropriate parameters can be used to 
simulate the robust gradient laws with leakage based on the instantaneous cost function, 
as shown in Example 3.16.10. For integral cost function, the robust gradient law with 
leakage can be simulated using  the Simulink block Parameter Estimator with 
appropriate parameters. For the robust LS laws with leakage, one may either incorporate 
the MATLAB function urobust with ucrls and urlsarg, or use the Simulink 
block Parameter Estimator with appropriate parameters, as demonstrated in Ex-
ample 3.16.10. The robust adaptive laws with dead zone can be simulated using the 
MATLAB commands or the Simulink blocks of the toolbox. 

 
Example 3.16.10 Consider the plant 
 

*y u dθ= + , 
 

where *θ  is the unknown scalar parameter of the plant, d is some unknown bounded dis-
turbance, and u  and  y are input and output signals of the system available for measure-
ment. Let * 2θ = , 1/ 2(1 )u t −= + , and ( )1/ 4 1/ 45

4(1 ) 2(1 )d t t− −= + − + . If we neglect d(t), 

we can design a gradient adaptive law to estimate the value of  *θ  as follows:  
 

1 1,   ,u y uθ γε ε θ= = −  
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Figure 3C.17 Simulation results for Example 3.16.10 using the pure gradient algo-

rithm with instantaneous cost function (with no robustness modification). 
 

where 0γ>  and ( )tθ  is the online estimate of *θ .  If we use this law directly in the 
existence of d(t), we get the result shown in Figure 3C.17 for 20.γ =  

As can be seen in  Figure 3C.17, although the estimation of the output signal is ac-
ceptable in terms of convergence, estimate of the parameter *θ  diverges. To prevent the 
divergence, we can apply robustness modifications. If we have no idea about the range of 

*θ , we can apply the fixed - modification.σ  Simulation for 0.05σ =  can be performed 
using the following code:  
 
t_final = 250; 
dt = 0.1; 
t = 0:dt:t_final; 
N_final = t_final/dt+1; 
theta_s = 2; 
u = (1+t).^(-0.5); 
d = ((1+t).^(-0.25)).*(1.25-2*((1+t).^(-0.25))); 
theta_0 = 1.5; 
Arg = urobust('csigma', 0.005); 
[nx, x] = ucgrad('init', theta_0, [], [], []); 
for n_step = 1:N_final, 
   y(n_step)= theta_s*u(n_step)+d(n_step); 
   dx = ucgrad('state',x,y(n_step),u(n_step),[],0,20,[],0,[],[],Arg);  
   x = x + dx*dt; 
   theta(n_step) = ucgrad('parameter',x,1,0); 
   yhat(n_step)= theta(n_step)*u(n_step); 
end    
 
The result is plotted in Figure 3C.18. 
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Figure 3C.18 Simulation results for Example 3.16.10 using the gradient algorithm 

with instantaneous cost function with fixed σ -modification. 
 

Furthermore, if we know that the value of *θ  is about 1.5,  with an error limit of 
1.0± , we can apply the switching σ -modification with 0 1.5θ = , 0 0.2σ = , 0 1.0M = . 

We can perform the corresponding simulation by changing the line Arg = uro-
bust('csigma', 0.005); of the code above to Arg = urobust('csigma', 
0.2,theta_0,1.0);. The result is plotted in Figure 3C.19. 

The benefit of using robustness modifications is obvious from Figures 3C.17–3C.19. 
It is also worth noting that choosing the ( )s t  larger makes the adaptive law more 
conservative; i.e., for large values of σ , 0σ , or 0ν , the effects of the pure adaptive laws 
are lost. This can be seen by trying different values for σ  and 0σ  in this example.  

The simulations above can be performed using the Simulink block Parameter 
Estimator* as well. Robustness modification parameters can be entered after select-
ing a robust modification method from the menu.       

                                                           
* For details about this block,  refer to the toolbox manual.  
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Figure 3C.19 Simulation results for Example 3.16.10 using the gradient algorithm 

with instantaneous cost function with switching σ -modification. 
 

 
  
3.16.5 Gradient Algorithms Based on a Bilinear Model 
 
The MATLAB function ucgrad or the Simulink  block Parameter Estimator can 
be used to implement the gradient algorithms based on B-SPM and B-DPM with known 
sign of *ρ . In addition to the known sign of *ρ , if a lower bound for *| |ρ  is known as 
well,  one may use the MATLAB function ucgradbk or modify the selections in the 
Simulink block Parameter Estimator.  Examples 3.16.11 and 3.16.12 demonstrate 
the implementation of the bilinear model-based gradient algorithms using the toolbox. 
 
Example 3.16.11 Consider the first-order differential equation 
 

1 0 sin 0.5
5

a y a y u t
π⎛ ⎞⎟⎜+ = = + ⎟⎜ ⎟⎟⎜⎝ ⎠

, 

 
where the coefficients 1a  and 0a  are unknown and need to be estimated using the histo-
ries of u and y. We can rewrite this equation in the bilinear parametric form, after filtering 
both sides with the Hurwitz polynomial ( ) 1s sΛ = + , as 
 

( )* *
0

Tz zρ θ φ= + , 
 

where ( )
s
sz yΛ= , 

1

* 1
aρ = , *

0aθ = , 1
( )s yφ Λ=− , and 1

0 ( )sz uΛ= . 

In order to estimate 
1

* 1
aρ =  and *

0aθ = , we can use the following estimation algo-
rithm: 



Page 3C.35 Chapter 3. Complementary Material 
  

 
( )*

02

sgn ,

,        

,        .
1 s

z
z

C

θ εφ ρ

ρ γεξ
ρξ

ε ξ θφ
φ

= Γ

=
−

= = +
+

 

 
 
Let us assume that the actual values of the parameters are 1 2a =−  and 0 1a =− . As-
sume also that the sign of 1a (hence *sgn( )ρ ) is known. Choosing the design coefficients 
as 0.1sC = , 1Γ= , and 1γ = , and the initial parameters as 

(0) 0 and (0) 0.000001θ ρ= =− , we can simulate the system and use ucgrad to obtain 
the estimates of the parameters online as follows: 
 
t_final = 250; 
dt = 0.5; 
t = 0:dt:t_final; 
N_final = t_final/dt+1; 
N_10 = 10/dt+1; 
a1 = -2; 
a0 = -1; 
num_dif = 1/a1; 
den_dif = [a1 a0]./a1; 
u = sin(0.5*t+pi/5); 
theta_s = a0; 
rho_s = 1/a1; 
theta(1) = 0; 
rho(1) = -0.000001; 
z(1) = 0; 
y(1) = 0; 
zhat(1) = 0; 
Lambda = [1 1]; 
gamma = 1; Gamma = 1; GammaSignRho = -Gamma;  
 
 
% Estimation parameters:  
[nx_est, x_est] = ucgrad('init', theta(1), rho(1), [], []); 
% Transfer function parameters: 
[nx_tf, x_tf] = ufilt('init',num_dif,den_dif,0); 
% Linear model parameters: 
[nx_z_phi, x_z_phi] = ufilt('init',1,Lambda,1:-1:0); 
[nx_z0, x_z0] = ufilt('init',1,Lambda,0); 
 
for n_step = 2:N_final, 
   dx_tf = ufilt('state',x_tf, u(n_step-1), num_dif, den_dif); 
   x_tf = x_tf + dx_tf*dt; 
   y(n_step)= ufilt('output',x_tf, u(n_step), num_dif, den_dif); 
   dx_z_phi = ufilt('state',x_z_phi, y(n_step-1), 1, Lambda); 
   x_z_phi = x_z_phi + dx_z_phi(:)*dt; 
   z(n_step) = ufilt('output',x_z_phi, y(n_step), 1,  
   Lambda, 1); 
   phi = -ufilt('output',x_z_phi, y(n_step), 1, Lambda, 0); 
   dx_z0 = ufilt('state',x_z0, u(n_step-1), 1, Lambda); 
   x_z0 = x_z0 + dx_z0*dt; 
   z0 = ufilt('output',x_z0, u(n_step), 1, Lambda); 
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   dx_est = 
   ucgrad('state',x_est,z(n_step),phi,z0,0,GammaSignRho,... 
                    gamma,0.1,[],[],[],[]);  
   x_est = x_est + dx_est*dt; 
   [theta(n_step), rho(n_step)] =  
   ucgrad('parameter',x_est,1,1); 
   zhat(n_step)= rho(n_step)*(theta(n_step)*phi + z0); 
end 
 
The results are plotted in  Figure 3C.20. If, furthermore, it is known that * 0.1ρ ≤− , we 
can get a better result by setting (0) 0.1ρ =−  and using   
 
rho(1) = -0.1; 
rhomin = -0.1; 
 
gamma = 1; Gamma =1; 
 
[nx_est, x_est] = ucgradbk('init', theta(1), rho(1), 
rhomin); 
 
dx_est = ... 
ucgradbk('state',x_est,z(n_step),phi,z0,0,Gamma,gamma,0.1,rhomin);  
x_est = x_est + dx_est*dt; 
x_est = ucgradbk('update',x_est,rhomin);  
[theta(n_step), rho(n_step)] = ucgradbk('parameter',x_est,1); 
 
instead of the corresponding lines in the code before. The results are shown in Figure 
3C.21. These two simulations could also be performed using the Simulink block Pa-
rameter Estimator*.       

 
Figure 3C.20 Simulation results for Example 3.16.11 assuming only *sgn( )ρ  is known. 

                                                           
* For details about this block,  refer to the toolbox manual.  
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Figure 3C.21 Simulation results for Example 3.16.11 assuming that both *sgn( )ρ  

and a lower boundary for *| |ρ  are known. 
 
Example 3.16.12 Consider the mass–spring–dashpot system shown in Figure 3C.22, 
where k  is the spring constant, f is the viscous-friction or damping coefficient, m  is the 
mass of the system, u is the forcing input, and x  is the displacement of the mass M . We 
will use the differential equation 

 
  M x u k x f x= − −  

 
to describe the system. Our task is to estimate the values of the unknown coefficients M, 
k, and  f. 

 
Figure 3C.22 Mass–spring–dashpot system. 

 

x 

u 

 M 

k 

f 



Page 3C.38 Chapter 3. Complementary Material 
  

We can rewrite the system equation as 
 

( )*  x u M x f xρ= − − , 
 

where * 1
kρ = . If we filter each side of this equation with 2( ) ( 1)s sΛ = + , we obtain the 

bilinear parametric model 
 

( )* *
1

Tz zρ θ φ= + , 
 

where 1
( )sz xΛ= , * [ ,  ]TM fθ = , 2

( ) ( ),  
T

s s
s sx xφ Λ Λ

⎡ ⎤= − −⎢ ⎥⎣ ⎦ , and 1
1 ( )sz uΛ= . Since 0k > , 

we know that *sgn( ) 1ρ = , and we can use the adaptive law for known *sgn( )ρ  for esti-
mation.  

Now, let us assume that 0.1 kg / secf = , 25 kg / seck = , 20 kgM = , and  
2

7 50.1cos 0.05sin   kg m/secu t tπ π= + .  Choosing the design coefficients as 0.1sC = , 

10000 0

0 100

⎡ ⎤Γ = ⎢ ⎥
⎣ ⎦

, and 100γ = , and the initial parameters as 0 [10,  0.2]Tθ =  and 

0 0.05ρ = , we can simulate the system and the parameter estimation process using the 
Simulink block Parameter Estimator* with appropriate choices and parameters in 
the scheme of Figure 3C.23. The results are shown in Figure 3C.24.  

If we furthermore know that * 0.1ρ ≥ , we can apply the adaptive law for known sign 
and bound of *ρ to our system. The simulation can be done using the scheme of Figure 
3C.23 with appropriate modifications in the selections and parameters of Parameter 
Estimator and changing the value of 0ρ  to 0.1. The results are shown in Figure 
3C.25.  

                                                           
* For details about this block,  refer to the toolbox manual.  
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Figure 3C.23 Simulink scheme for estimating the coefficients of the mass–spring–
dashpot system in Example 3.16.12. 
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Figure 3C.24 Simulation results for Example 3.16.12 assuming only *sgn( )ρ  is known. 

 
 

Figure 3C.25 Simulation results for Example 3.16.12 assuming that both *sgn( )ρ  
and a lower boundary for *| |ρ  are known. 
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