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5.3.2 MRC Schemes: Known Plant Parameters 
 
Proof of Lemma 5.3.4. For 1n = , we have ( ) 0sα = , ( ) 1sΛ = . Hence, (5.83) implies 

1 2 0θ θ∗ ∗= =  and a unique solution for 3θ
∗ .    

 For 2n ≥ , consider the monic greatest common divisor ( )pH s  of ( )pZ s  and ( )pR s . 

Then we can write ( ) ( ) ( )p p pZ s Z s H s= , ( ) ( ) ( )p p pR s R s H s=  for some coprime 

polynomial pair ( )pZ s , ( )pR s . Since ( )pZ s  is Hurwitz, ( )pH s  also has to be Hurwitz. 
Hence we can divide both sides of (5.83) by ( )pH s  and obtain   
 

( )* * *
1 2 3 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T

p p p p p ms R s k s s Z s s R s Z s s R sθ α θ α θ+ + Λ =Λ − Λ . 
 

It can be easily seen that the degree of the right-hand side is 2p hn n r+ − − , where hr  is 

the degree of ( )pH s . Since ( )pZ s , ( )pR s  are coprime, Theorem A.2.5 (see the 
Appendix) implies that there exist unique polynomials ( ) ( )a s b s,  of degree 

2 1p hn n r− , − − , respectively, such that  
 

0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p p p p ma s R s b s Z s s R s Z s s R s+ =Λ − Λ . 
 
Once the unique solution ( ) ( )a s b s,  of the above equation is calculated, the general 
solution for * * *

1 2 3( ), ( ( ) ( ))T T
ps k s sθ α θ α θ+ Λ  can be obtained as 

 

 
( )

*
1

* *
2 3

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

T
p

T
p p

s s Z s a s

k s s s R s b s

θ α β

θ α θ β

= +

+ Λ =− +
 (5C.1) 

 
where ( )sβ  is any polynomial of degree 1p hn n r− + − . Once a polynomial ( )sβ  of 

degree 1p hn n r− + −  is fixed, 1 2 3θ θ θ∗ ∗ ∗, ,  can be calculated equating the coefficients of 
both sides of (5C.1). 
 If p pR Z,  are coprime (i.e., 0hr = ) and pn n= , then ( ) 0f s =  and hence the 

solution of (5C.1) for 1 2 3θ θ θ∗ ∗ ∗, ,  is unique.      
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5.4 Direct MRAC with Unnormalized Adaptive Laws 
 
5.4.1 Relative Degree n* = 1  
 
Proof of Theorem 5.4.1(ii) [1]. Since r ∞∈L , from (i) we have that ω ω ∞, ∈L . 
Furthermore, ω  can be expressed as 
 

1 1

1

( ) ( )

( )

p p

p

p

c sI F gG s y

sI F gy

y

r

ω

− −

−

⎡ ⎤−⎢ ⎥
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

. 

   
 Since 1 1( )p m my y e W s r e= + = + , we have  
  

( )H s rω ω= + , 
 
 where 0 1( )H s eω =  and 
 

1 1 1 1

1 1

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) .
( ) 1

01

p m p

m

m

c sI F gG s W s c sI F gG s

sI F gW s sI F gH s H s
W s

− − − −

− −

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= , =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

 
0 ( )H s  is a proper transfer matrix whose poles are stable, and 1 2e ∞∈ ∩L L  and goes to 

zero as t →∞ . Hence, from Lemma 3C.1 we have 2ω ∞∈ ∩L L  and ( ) 0tω| |→  as 
t →∞ . Therefore, by definition of PE, ω  is PE if  ( )H s r  is PE. Since r  is sufficiently 
rich of order 2n , applying Theorem 3.4.3, this further implies that ω  is PE if 

1 2 2rank[ ( ) ( ) ( )] 2nH j H j … H j nω ω ω, , , =  on 2nC  for any 1 2 2n…ω ω ω, , , ∈R  with i jω ω≠  
for i j≠ .  ( )H s  can be rewritten as  
 

1

( ) ( ) ( )

( ) ( ) ( )1 1
( ) , , ,1 ,

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

p m m

Tp p m m l l

p p m mp p m

p p m

c s R s k Z s

s k Z s k Z s
H s H s s

s k Z s k Z sk Z s s R s D s

s k Z s R s

α

α
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ΛΛ ⎢ ⎥
⎢ ⎥
⎢ ⎥Λ⎢ ⎥⎣ ⎦

…  

 
where ( ) ( ) ( ) ( )p p mD s k Z s s R s= Λ , deg( ( ) ( ) ( )) 2 1p m ml s Z s R s n q= Λ = − + , and 

2 ( 1)n lH × +∈R  is a constant coefficient matrix. Therefore, we have 
 

[ ] ( ) ( )1 2 1 2 1 2( ) ( ) , , , ,n n nH j H j Hω ω ω ω ω ω, , = Ψ ϒ… … … , 
 
where  
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( )

( )

1 2 2
1 1 1

1 2 2
1 2

1 2
1 2

( ) ( ) ( )

( ) ( ) ( )
, , ,

1 1 1 1

1 1
, , diag , , .

( ) ( )

l l l
n

l l l
n

n

n
n

j j j

j j j

D j D j

ω ω ω
ω ω ω

ω ω

ω ω
ω ω

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Ψ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞⎟⎜ ⎟ϒ = ⎜ ⎟⎜ ⎟⎜⎝ ⎠

…

… …

 

 
1 2( , , )nω ωϒ …  is obviously nonsingular. 1 2( , , )nω ωΨ …  is also nonsingular since it is a 

submatrix of the Vandermonde matrix and i k i kω ω≠ , ≠ . Therefore, 

1 2rank[ ( ) ( )] 2nH j … H j nω ω, , =  if and only if rank( ) 2H n= . Next we show that 
rank( ) 2H n= . Assume to obtain the contradiction that rank( ) 2H n< . Then there exists 
a nonzero constant vector 2nC ∈R  such that  
 

0.TC H =  
 
Using the decomposition 1 2 3 4[ ]T T TC C C c c= , , , , where 1

1 2 3 4;nC C c c−, ∈ , ∈R R , this 
implies that 
 

1
1 2 3

4

, , ,1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                                  ( ) ( ) ( ) 0.

TT l l T T
p m m p p m m p p m m

m p p

C H s s C s R s k Z s C s k Z s k Z s c s k Z s k Z s

c s R s k Z s

α α−⎡ ⎤ = + + Λ⎢ ⎥⎣ ⎦
+ Λ =

…

 
Observing that 4c  is the coefficient of the ls  term, we have 4 0c = . This further implies 
that   
 

( )1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T
p p p p p m mC s R s C s k Z s c s k Z s k Z sα α+ + Λ =  

 
or, equivalently, 
  

( )1 2 3( ) ( ) ( ) ( ) ( ) 0,T T
p p pC s R s C s c s k Z sα α+ + Λ =  

 
i.e., 
  

1

3 2

( ) ( )
.

( ) ( ) ( )

T
p p

T
p

k Z s C s

R s c s C s

α
α

−
=

Λ +
 

 
Since 3 2deg( ( ) ( )) 1Tc s C s nαΛ + ≤ − , this contradicts the coprimeness of ( ) ( )p pZ s R s, . 

Therefore, rank( ) 2H n=  and hence 1 2rank[ ( ) ( )] 2nH j … H j nω ω, , = . Thus we have 
shown that ω  is PE. 
 Now consider (5.98) and (5.100), i.e., 
 

 ( )

*
0

*
1

1

 (0) ,

sgn ,

,

T
c c

T
c

e A e B e e

e

e C e

ρ θ ω

θ ω ρ

= + , =

=−Γ

=

 (5C.2) 
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and the Lyapunov-like function in (5.99), i.e., 1 *

2 2( )
T T

ce P eV e θ θθ ρ
−Γ, = + | | . From (5.101) 

we have  
 

1 1 1 12 2

T T
T T T Tc

c c c

e qq e
V e L e e C C e e e

ν
ν ν=− − ≤− =−  

 
for some constant 1 0ν > , noting that 0cL > .  We can rewrite (5C.2) as 
 

1( ) ,   ,Te A t e e C e= =  
 
where 
 

( )

*

*

( )
,  ( ) ,  .

0( )sgn 0

T
c c c

T
c

A B te C
e A t C

t C

ρ ω

θ ω ρ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥−Γ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

 
We can also rewrite ( )V t  as TV e Pe= , where  
 

* 1

01
02

cP
P

ρ −

⎡ ⎤
⎢ ⎥= ⎢ ⎥Γ⎢ ⎥⎣ ⎦

. 

 
Hence we have 1 1 1 1( )T T T T TV e PA A P e e e e CC eν ν= + ≤− =− , which implies that 

1( ) ( )T TPA t A t P CCν+ +  is negative semidefinite. Therefore, using Theorem A.8.3, to 

show that θ  and 1e  converge to zero asymptotically and hence exponentially fast, it is 
sufficient to show that ( , )C A  is a  UCO pair. 
 By Lemma A.8.4, ( , )C A  is a  UCO pair if and only if  ( , )TC A KC+  is a  UCO pair, 
where 
 

( )*

0
( )

sgn ( )
K t

tρ ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥− Γ⎢ ⎥⎣ ⎦

, 

 
which satisfies the integral condition in Lemma A.8.4 since ω ∞∈L . The system 
corresponding to ( , )TC A KC+  can be written as 
 

( )

*

*

( )
, ( ) , ,

0( )sgn 0

T
c c c

T
c

A B te C
e A t C

t C

ρ ω

θ ω ρ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥−Γ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

 
*

1 1 2

2

0 1

,

0,

.

T
c

T
c

x Ax B x

x

y C x

ρ ω= +

=

=

 

 
Observing that * 1( )T

c c cC sI A Bρ −−  is stable and minimum-phase, since ω ω ∞, ∈L  and ω  
is PE, * 1( )T

c c cC sI A Bω ρ ω−= −  is PE as well because of Lemma 3C.1 (see Chapter 3: 
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Complementary Material). Therefore, using Lemma A.8.5, we have that ( , )TC A KC+  is 
UCO, and the proof is complete.      
 
 
5.4.2 Relative Degree * 2n =   
 
Proof of Theorem 5.4.3(ii) [1]. It has already been established that py φ ∞, ∈L . From 

(5.113) and the fact that 1e ∞∈L  and hence py ∞∈L , we have that φ ∞∈L . Next we 

show that φ  is PE. Similar to the case of 1n∗ = , we write φ  as 
  

( )H s rφ φ= + , 
 

where 1( )oH s eφ =  and 
  

1 1 1 1

1 1

0
0 0

( ) ( ) ( ) ( ) ( )

1 1( ) ( ) ( )
( ) ,    ( )

( ) 1

1 0

p m p

m

m

sI F gG s W s sI F gG s

sI F gW s sI F g
H s H s

s p s pW s

− − − −

− −

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

 
Since 1 2e ∞∈ ∩L L  and 1e ∞∈L , it follows from Lemma 3C.1 that 2φ ∞∈ ∩L L  and 

0φ →  as t →∞ . Hence we can apply exactly the same steps in the proof of Theorem 
5.4.1 to show that φ  is PE.   
 Now consider the error equations (5.110), (5.112), which have the same form as 
(5.98), (5.100). As in the proof of Theorem 5.4.1(i), we use Lemma 3C.1 and the results 
above stating that φ φ ∞, ∈L  and φ  is PE, and establish that the adaptive law (5.112) 

guarantees that θ| |  converges to zero exponentially fast. Using (5.110), this also implies 
that 1e  converges to zero exponentially fast.      
 
 
5.4.3 Relative Degree Greater than 2 
 
When the relative degree is greater than 2, the procedure is very similar but the control 
law becomes more complex. In this subsection, we present the relative degree-3 case to 
illustrate the approach and complexity. 
 When the relative degree is 3n∗ = , the transfer function ( )mW s  of the reference 
model cannot be chosen to be SPR because according to assumption M2 (stated in section 
5.3.1), the relative degrees of the reference model ( )mW s  and the plant ( )pG s  should be 

the same. Therefore, the parameterization (5.103) and the control law T
pu θ ω=  will not 

lead to a desired error equation where the SPR characteristics can be employed. In order 
to be able to employ these characteristics, we rewrite (5.104) in a form that involves an 
SPR transfer function as follows: 
  

( )1 0 1( )( )( ) T
m pe W s s p s p uρ θ ω∗ ∗= + + − , 

 
where  
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0 0 0
0 1

1
( ) ( ) , ( ) ,

( )( )p pu H s u H s H s
s p s p

ω ω= , = =
+ +

 

 
and 0 1( )mW s p p, ,  are chosen so that 0 0 1( ) ( ) ( ) ( )( )( )m m mW s W s H s W s s p s p= = + +  with 
relative degree 1 is SPR. Without loss of generality let us consider 
  

0 1 2

1
( )

( )( )( )mW s
s p s p s p

=
+ + +

 

 
for some 2 0p >  so that 
  

1
2

1
( )Te u

s p
ρ θ ω∗ ∗= −

+
. 

 
The estimate of 1̂e  of 1e  is given by  
 

1
2

1
ˆ ( ),T

pe u
s p

ρ θ ω= −
+

 

 
where ρ θ,  are the estimates of * * ,ρ θ,  respectively. The design procedure for 2n∗ =  
suggests using  
 

T
pu θ ω=  

 
to obtain 

2

1
1̂ [0]s pe +=  and 

2

1
1

T
s pe ρ θ ω∗
+= . However, the suggested control law implies 

 
0 1 0 1( )( ) ( )( ) T

p pu s p s p u s p s p θ ω= + + = + +  
 
involving θ,  which is not available for measurement, noting that θ  could be obtained 
using the adaptive law chosen. Hence the choice of T

pu θ ω=  is not feasible.  

 The difficulty of not being able to extend the results for 1 2n∗ = ,  to 3n∗ ≥  was 
circumvented only after the late 1970s. After that several successful MRAC schemes 
were proposed using different approaches [2,3,6]. In the following we present a design 
very similar to that in [3].  We first rewrite the equations for 1e  and 1̂e : 
 

1 0 1 0 0
2 2

1 1
ˆ( ),   ,   T T

pe e e e e u
s p s p

ρ θ ω ρ θ ω∗= + = = −
+ +

, 

 
where θ θ θ∗= − . We select pu  so that 0e  goes to zero as t →∞ . In this case, the 
estimation error 1 1 1̂e eε = −  satisfies  
 

1 1 1 0
2

1
ˆ ( ).Te e e

s p
ε ρ θ φ ρ∗= − = −

+
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Considering the Lyapunov-like function 

2 21
1

2 2 2

T

V ε ρθθ
γρ

−Γ ∗= + | |+ , we design the adaptive 
law  
 
 1 1 0sgn( )   ,eθ ε ω ρ ρ γε∗=−Γ , =  (5C.3) 
 
where TΓ= Γ  and 0γ> . Let us now express 0e  as  
 
 0 0 0 1 1,T Te p e u θ ω θ ω=− + − −  
 
where  
 

1 1 0
1 1

1 1
( ) .pu u s p

s p s p
ω ω ω= , = + =

+ +
 

 
Substituting for θ , we obtain  
 

0 0 0 1 1 1sgn( ) .T Te p e u ω ωε ρ θ ω∗=− + + Γ −  
 
To counteract the term 1sgn( )Tω ωε ρ∗Γ , we use a so-called nonlinear damping term [4,5] 
in 1u  as follows: 
 
 ( )2

1 1 0 0 ,T Tu eθ ω α ω ω= − Γ  (5C.4) 

 
where 0 0α >  is a design constant. Using the above control law, we obtain  
 

( )( )2

0 0 0 0 1sgn( ),T Te p eα ω ω ω ωε ρ∗=− + Γ + Γ  

 
which will force 0e   and hence 1e  to converge to zero.  To check the implementability of 
the control law, we substitute (5C.4) into 1 1( )pu s p u= +  and obtain  
 

 
( ) ( ) ( )

2
1 1 0 0 1 0 0

4 32 2
0 1 0 0 0 0 0 1

( ) ( ) 4 ( )

      ( ) sgn( ),

T T T T T T T
p

T T T

u s p e e

p p e e

θ ω θ ω α ω ω θ ω θ ω α ω ω ω ω

α ω ω α α ε ρω ω ω ω ∗

= + − + Γ = + − Γ Γ

− − Γ + −Γ Γ
(5C.5) 

 
 where 

0 1( )( )
s

s p s pω ω+ += . Hence the control law can be implemented without using 
differentiators. The stability properties of the above MRAC scheme are summarized in 
the following theorem.  
 
Theorem 5.4.6 The MRAC scheme (5C.3), (5C.5) guarantees that  

(i) all signals in the closed-loop plant are bounded and 0 1( ) ( ) 0e t e t, →   as 
t →∞ ;  

(ii) the estimate ρ  converges to a constant ρ  asymptotically independent of the 
richness of r .  If r  is sufficiently rich of order 2n  and p pZ R,  are coprime, 

then the parameter error θ θ θ∗= −  and tracking error 1e  converge to zero 
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asymptotically.  Further, if pk  is known, then θ , 1e  converge to zero 
exponentially fast.  

 
Proof [1].  (i) Observe that 
 

 

1 2 1 0

2
0 0 0 0 1

1

1 0

,

( ( ) ) sgn( ),

sgn( ),

.

T

T T

p e

e p e

e

ε ε ρ θ ω ρ

α ω ω ω ωε ρ

θ ε φ ρ

ρ γε

∗

∗

∗

=− + −

=− + Γ + Γ

=−Γ

=

 (5C.6) 

  
The time derivative of the Lyapunov-like function  
 

2 22 1
01

0 ,
2 2 2 2

T e
V

ε ρ
ρ θ θ γ

γ

−
∗ Γ

= + + +  

 
where 0 0γ >  is a design constant to be selected, satisfies 
  

2 2 2 2
2 1 0 0 0 0 0 0 0 1 0

2 2 2 2
2 1 0 0 0 0 0 0 0 1 0

2
2 2 201

2 0 2 0 0 0 0
2

( ) sgn( )

  ( )

  ( ) .
2 2

T T

T T

T

V p p e e e

p p r r e

p p e e
p

ε γ γ α ω ω γ ε ω ω ρ

ε γ γ α ω ω γ ε ω ω

γε
γ α γ ω ω

∗=− − − Γ + Γ

≤− − − Γ + Γ

⎡ ⎤
⎢ ⎥≤− − − − Γ⎢ ⎥
⎣ ⎦

 

  
Choosing 0 0 22 pγ α= , we have 
 

2
21

2 0 0 0 0.
2

V p p e
ε

γ≤− − ≤  

 
Hence, 1 0eε ρ θ ∞, , , ∈L  and 1 0 2eε , ∈L , and therefore 1 1 2

ˆ , ; pe e y∞ ∞∈ ∈∩L L L . This 
further implies that 0 ( )H sω ω ∞= ∈L . (5C.6) together with 1ε ω ∞, ∈L , 1 2ε ∈L  implies 

that 2θ ρ ∞, ∈ ∩L L . (5C.6) further implies that 1, pyε ∞∈L  and hence 1,ω ω ∞∈L . Since 

0eθ φ ∞, , ∈L , we have 1e ∞∈L  which together with 2
1 ( )mp e s W s ry = +  and properness 

of 2 ( )ms W s  implies that ,py ω ∞∈L  and hence 0 1( )( )s p s pω ω ∞= + + ∈L . Therefore, 

all the closed-loop signals are bounded. Since 0 1,e e ∞∈L  and 0 1 2,e e ∈L , it follows that 

0 1( ), ( ) 0e t e t →  as t →∞  .    

(ii) Since 1 0 2eε , ∈L  we have 
1 1
2 22 2

1 0 1 0
0 0 0 0

( ) ( )
t t

d e d d e dρ τ γ ε τ γ ε τ τ
∞ ∞

≤ | || | ≤∫ ∫ ∫ ∫   

, ∞∈ L i.e., 1ρ ρ= ∈L  and therefore ρ ρ,  converge to a constant as t →∞ .     
 It can be established that ω  is PE, provided that r  is sufficiently rich of order 2n  
and p pZ R,  are coprime, using similar arguments and steps as in the proof of Theorem 
5.4.3.  
 If pk  is known, then 0ρ =  and  (5C.6) is reduced to  
 

1 2 1

1

,

sgn( ).

Tpε ε ρ θ ω

θ ε ω ρ

∗

∗

=− +

=−Γ
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Since ω ω ∞, ∈L   and ω  is PE, using the same steps as in the proof of Theorem 3.6.1 we 

can show that θ  and 1e  converge to zero exponentially fast. 

 If pk  is unknown, we consider the equations for 1,ε θ  in (5C.6), i.e.,   
 

1 2 1 0

1

,

sgn( ),

Tp eε ε ρ θ ω ρ

θ ε ω ρ

∗

∗

=− + −

=−Γ
 

 
as an LTV system with 1ε θ,  as the states and 0eρ  as the input. Since for the above 

system (as shown above) θ  and 1e  converge to zero exponentially fast when 0 0eρ =  
and ω  is PE, and since (as shown in part (i)) ρ ∞∈L , 0 2e ∞∈ ∩L L , and 0 ( ) 0e t →  as 

t →∞ , it follows from Lemma A.5.9 (in the Appendix) that 1( ) ( ) 0t tε θ, →  as 
t →∞ .      
 
 
5.5 Direct MRAC with Normalized Adaptive Laws 
 
Lemma 5.5.2.  Consider the plant equation (5.72) and the MRAC scheme (5.116), 
(5.119). There exists a 0δ>  such that the fictitious normalizing signal  
 

2 22 1 ,f p pm u y+ +  
 
where || ||⋅  denotes the 2δL  norm,4 satisfies the following: 

(i) 1 2 .f fm mω ω ∞/ , / ∈L  
(ii) If θ ∞∈L  and ( )W s  is a proper transfer function with stable poles, then in 

addition to (i), ( )p f p f f fu m y m m W s mω ω ∞/ , / , / , / ∈L .  

(iii)  If r θ ∞, ∈L , then in addition to (i) and (ii), f fp m my ω ∞/ , / ∈L .  
 

Proof [1].  (i) Since ( ) ( )
1 2( ) ( )

s s
p ps su yα αω ωΛ Λ= , = , and the relative degree of each element of 

( )
( )
s
s

α
Λ  is at least 1 , the result follows from Lemma A.5.9 and the definition of fm . 

  (ii) Since θ ∞∈L , applying Lemma A.5.9 to (5.120), we obtain 
 

( ) ,T
py t c c c cθ ω ω≤ + ≤ +  

 
where 0c ≥  denotes any finite constant. Therefore, since  
 

1 2 p p p fy r c u c y c cm cω ω ω≤ + + + ≤ + + ≤ +  
 
we have p f fy m mω ∞/ , / ∈L . Since T

pu θ ω=  and θ ∞∈L  this further implies that 

p fu m ∞/ ∈L . Finally, since ( )W s cω ω≤  for some 0δ>  such that ( 2)W s δ−  is 
stable, ( ) fW s mω ∞/ ∈L .  

                                                           
4 The same notation is used in the proof. 
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 (iii) The result follows by differentiating (5.120) and (5.121), using (5.116) and  the 
inequality 1 2|| || || || || || || || || ||py rω ω ω≤ + + + , and applying Lemma A.5.2.      
 
 
Proof of Theorem 5.5.1. 
 
Step 1. Express the plant input and output in terms of the adaptation error θ ωT  
This step is already described in detail in the outline of the proof. For θ ∞∈L , which is 
guaranteed by the adaptive law, we apply Lemma 5.5.1 to establish that the signal fm  
bounds all signals in the closed-loop adaptive system and some of their derivatives. 
 
Step 2. Use the swapping lemmas and properties of the 2L δ  norm to upper bound 

|| ||θ ωT  with terms that are guaranteed by the adaptive law to have finite 2L  gains 
Using Lemma A.11.2, we have  
 

( ) ( )1 0 0( ) ( ) ,T T T TF s F sθ ω α θ ω θ ω α θ ω= , + + ,  

 
where 0 0 0 1 0 0( , ) ( )   ( ) 1 ( )n nF s s F s F s sα α α α α

∗ ∗

= + , , = − , , 0 0α >  is an arbitrary 
constant, and n∗  is the relative degree of ( )mW s . Similarly, using Lemma A.11.1, we 
have  
 

( )( )1( ) ( ) ( ) ( ( ) ) ,T T T
m m c bW s W s W s W sθ ω θ ω ω θ−= +  

 
where ( ), ( )b cW s W s  are as defined in Lemma A.11.1 for ( ) ( )mW s W s= .  Combining the 
two swapping lemma equalities above, we obtain  
 

( )1
1 ( ) ( ) .T T T T T

m m c bF FW W s W Wθ ω θ ω θ ω θ ω ω θ− ⎡ ⎤⎡ ⎤= + + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
Expressing the normalized estimation error in (5.119) as 2 T

smε ρ θ φ ρξ∗=− −  and 
substituting in the above equation, we obtain 
 

( )1 2
1 * *

1
( ) .T T T T

m s c bF FW m W W
ρ

θ ω θ ω θ ω ε ξ ω θ
ρ ρ

−
⎡ ⎤⎡ ⎤ ⎢ ⎥= + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

  
Using Lemma A.11.1, we have  
 

( ) ( ) ( ) .T T T T
f m m c bu W s W s W Wξ θ φ θ ω θ ω ω θ⎡ ⎤= + =− + = ⎢ ⎥⎣ ⎦  

 
Hence we can rewrite the expression for  Tθ ω  as 

 ( )1 2
1 *

1
( ) .T T T T

m s c bF FW m W Wθ ω θ ω θ ω ε ρ ω θ
ρ

− ⎡ ⎤⎡ ⎤= + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

 
Applying Lemma A.11.2 again, we obtain 
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 ( ) 2
0

0

( ),T T T n
s

c
c mθ ω θ ω θ ω α ω ε

α
∗

≤ + + +  (5C.7) 

where (( ) )T
c bW Wω ρ ω θ= . Using Lemma A.5.2 and Lemma 5.5.2, we have 

   
2, .T T

f f f s s fc m c m cm m c m mω θ θ ω θ θ ω ε ε≤ ≤ , ≤ , ≤  
 
Therefore, for 0 1α >  and 2 2 2 2| |smg ε θ= + , (5C.7) leads to (5.124), where because of 

2smε θ, ∈L , 2g ∈L .  
 
Step 3. Use the B–G lemma to establish signal boundedness This step is already 
described in detail in the outline of the proof. 
 
Step 4. Show that the tracking error converges to zero From (5.119) we have  
 

2
1 .se mε ρξ= +  

 
Since 2[ ] [ ] [ ] [ [ ] ], , , ,T T T T T

m m m c b sW W W W W mξ θ φ θ ω θ ω θ ω ω θ ε ε θ= + = − = ∈L and snω, ∈  

∞L , we have 1 2,e ξ ∈L . Furthermore, using (5.118), ,θ θ ∞∈L  (as guaranteed by the 
adaptive law (5.119)),  Lemma 5.5.2, and Lemma A.11.1, we have 1e ∞∈L . Therefore, 
using Lemma A.4.7, we establish that 1( ) 0e t →  as t →∞ .  
 
Step 5. Establish that the parameter error converges to zero By definition, we have 
  

1

1

( )

( )
( ) .

p

p
m

p

sI F gu

sI F gy
W s

y

r

φ

−

−

⎡ ⎤−⎢ ⎥
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

 
Substituting 1( )p p pu G s y−=  and 1( )p my W s r e= +  into this, we have 
  

1 2 1( ) ( ) ( ) ( ) ,m mW s H s r W s H s eφ= +  
where 
 

1 1 1 1

1 1

1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) , ( ) .
( ) 1

01

p m p

m

m

sI F gG s W s sI F gG s

sI F gW s sI F gH s H s
W s

− − − −

− −

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

 
It was established in the proof of Theorem 5.4.1 that if r  is sufficiently rich of order 2n , 
then 1( )H s r  is PE. Hence applying Lemma 3C.1, since ( )mW s  is stable and minimum 
phase and 1 2e ∈L , it follows that φ  is PE. 
 Next, we establish the convergence results. From (5.119), we have 
 

2 ,

sgn( ).

T
s

p m

m

k k

ε ρ θ φ ρξ

θ εφ

∗= −

= Γ /
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Using p pu y ∞, ∈L  we have φ φ ∞, ∈L . Hence, since φ  is PE and 2ξ ∈L , applying the 

arguments in the proof of Theorem 3.9.1, we establish that ( ), ( ) 0t e tθ →  as t →∞ .     
 
 
5.6.2 Indirect MRAC with Normalized Adaptive Law 
 
Proof of Theorem 5.6.1. 
 
Step 1. Express the plant input and output in terms of the adaptation error Tθ ω  As 
in the proof of Theorem 5.5.1 we have 
 

( )
( )

0

0

1

1 1

( ) ,

( ) ( ) .

T
p m c

T
p p m c

y W s r

u G s W s r

θ ω

θ ω

∗

∗

−

= +

= +
 

 
Again as in the proof of Theorem 5.5.1 we use || ||⋅  to denote the 2δL  norm and define 
the fictitious signal 2 2 21 || || || ||f p pm u y+ + , for some 0δ> , to satisfy Lemma 5.5.2. 
Following the same steps as in the proof of Theorem 5.5.1, we obtain  
 

2 2|| || .T
fm c c θ ω≤ +  

 
Step 2. Use the swapping lemmas and properties of the 2L δ  norm to upper bound 

|| ||θ ωT  with terms that are guaranteed by the adaptive law to have finite 2L  gains 
Note first that based on (5.133) and (5.134) it can be established using similar arguments 
as in the proof of Theorem 5.5.1 that 2

ˆ,1 , ;   ,p p pkθ θ θ θ∞∈ ∈L L . Using (5.132), we have 
 

( )

* * *
1 1 2 2 3

0

( )1
( ) ( ) ( ) ( ) ( ) ( )

( )

( )1
                                                ( ) ( ) ( ) ( ) .

( )

T T m
m m m p m p p p

p

m
p m p

p

W s
W s W s W s y W s u Z s Q s u

sk

W s
Q s R s s R s y

sk

θ ω θ ω θ+ + = −
Λ

+ −Λ
Λ

 

 
Similarly, using (5.133), we obtain  
 

( )

1 1 2 2 3

0

( )1 ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ( )

( )1 ˆ ˆ                                                ( ) ( ) ( ) ( ) .
ˆ ( )

T T m
m m m p m p p p

p

m
p m p

p

W s
W s W s W s y W s u Z s t Q s t u

sk

W s
Q s t R s t s R s y

sk

θ ω θ ω θ+ + = − , ⋅ ,
Λ

+ , ⋅ , −Λ
Λ

 

 
Taking the difference of the two equations above, we get 
 

1 1 2 2 3 1 2 3( ) ( ) ( )T T
m m m pW s W s W s y e e eθ ω θ ω θ+ + = + + , 

 
where *

i i iθ θ θ−  and  
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( )

( )

1

*0
2 0 0

3

( ) ( )1 ˆˆ ˆˆ( ) ( ) ( ) ( ) ,
ˆ ( ) ( )

( ) ( )1 1
( ) ,

ˆ ( )

( )
( ) ( ) ( ) 0.

( )

p p p p

p

m
m p p

p p

m p p p p
p

W s W sm me Q s t R s t y Q s t Z s t u
s sk

s R s
e W s y c c y

sk k

Q s
e W s Z s u R s y

k s

⎛ ⎞⎟⎜ ⎟⎜= , , − , , ⎟⎜ ⎟⎜ ⎟Λ Λ⎝ ⎠
⎛ ⎞Λ⎟⎜ ⎟⎜= − = −⎟⎜ ⎟⎜ Λ⎟⎜⎝ ⎠

= − =
Λ

i i

 

 
Therefore, for   1

1 2[ , , , ( ) ]T T T
p m py W s yω ω ω −  and *θ θ θ−  we have 

 

1( ) .T
mW s eθ ω =  

 
Furthermore, applying Lemma A.11.3 to ( )1

ˆ1 ( )
ˆ ˆ( ( ) ( ) m

p

W s
p psk

e Q s t R s t yΛ= , , −i  

( )

( )
ˆˆ ( ) ( ) )mW s

p psQ s t Z s t uΛ, ,i   we obtain 
 

1 11 12 ,e e e= −  
 

where  

* *

*

11

12 12 2

1

( ) ( )1 ˆˆ ˆ( ) ( ) ( ) ,
ˆ ( ) ( )

( ) ( )
( ) ( ) ( ) , ( ) ,

( ) ( )

ˆ ( , ) ( ).

m m
p p p p

p

T T Tm m
m p n p pn n

T

n

W s W s
e Q s t R s t y Z s t u

s sk

W s W s
e q D s s s u s y

s s

Q s t q s

α α α θ

α

−− −

−

⎛ ⎞⎟⎜= , , − , ⎟⎜ ⎟⎜ ⎟Λ Λ⎝ ⎠

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥Λ Λ⎣ ⎦⎣ ⎦

=

 

 
Since 
 

11

2

( ) ( )1 ˆˆ ˆ( ) ( ) ( )
ˆ ( ) ( )

( ) ( ) ( ) ( )1 1ˆ ˆ    ( ) ( )
ˆˆ ( ) ( )

( ) ( )1 ˆ    ( ) ( )[ ( ) ]
ˆ ( )

m m
p p p p

p

m p m pT T
p p

pp

m p T
s c b

p

W s W s
e Q s t R s t y Z s t u

s sk

W s s W s s
Q s t Q s t

s skk

W s s
Q s t m W s W s

sk

θ φ θ φ

ε φ

⎡ ⎤
⎢ ⎥= , , − ,
⎢ ⎥Λ Λ⎣ ⎦
⎡ ⎤ ⎡ ⎤Λ Λ⎢ ⎥ ⎢ ⎥= , − = , −⎢ ⎥ ⎢ ⎥Λ Λ⎣ ⎦ ⎣ ⎦

Λ ⎡ ⎤= , −⎢ ⎥⎣ ⎦Λ
,pθ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where Lemma A.11.1 is used to obtain the last equality,  using Lemma 5.5.2, the 
definition of ˆ ( , )Q s t , and the fact that θ ∞∈L  and py =

0

1( )( ),T
m c

W s r θ ω∗+  

0

1 1( ) ( )( )T
p p m c

u G s W s r θ ω∗
−= + , we obtain 

 
 1 11 12 ,s f fe e e c m m c mε θ≤ + ≤ +  (5C.8) 

 
where c  denotes a generic positive constant. Furthermore, from (5.117) we have  
 

*
* *
0 0

1 1
( ) .T T

p m m p my y W u W
c c

θ ω θ ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = − =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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Therefore, 
 

( ) ( )
*

* 1 0 0
0 0 *

0

( ) ,T T T T
m p

c c
c c W y r

c
θ ω θ ω θ ω ω θ ω− −

− = − = − − =  

 
i.e., 0

*
0

cT T

c
θ ω θ ω= . Hence, using Lemma A.11.2, we obtain 

 

 0
1 0 0

0

( ) ( ) ,T T T Tc
F s F s

c
θ ω α θ ω θ ω α θ ω

∗
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎡ ⎤ ⎡ ⎤= , + + , ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦  (5C.9) 

 
where 0 0 0 1 0 0( , ) ( )   ( ) 1 ( )n nF s s F s F s sα α α α α

∗ ∗

= + , , = − , , 0 0α >  is an arbitrary 
constant, and n∗  is the relative degree of ( )mW s  and satisfies 

0

1
1 0 0 0( ) ( ) ( ) nc

mF s F s W s cαδ δ
α α α

∗−
∞ ∞

, ≤ , , ≤  for any 0 0α δ> > . Applying Lemma 

A.11.1 , we obtain  
 
 1 1

1 .T T T T
m m p c b m c bW W W W W e W Wθ ω θ ω ω θ ω θ− −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (5C.10) 

 
Substituting in (5C.9), we get 

 

( )10
1 0 0 1

0

( ) ( ) ( ) ( ) ( ) .T T T T
m c b

c
F s F s W s e W s W s

c
θ ω α θ ω θ ω α ω θ

∗
− ⎡ ⎤⎡ ⎤ ⎡ ⎤= , + + , + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦  

 
Since 0c  is bounded from below, i.e., applying Lemma A.5.10 and Lemma 5.5.2, we 
obtain 
 

 ( )0 1
0 0

.T n
f f f

c c
m m c e mθ ω θ α θ

α α
∗

≤ + + +  (5C.11) 

 
Using (5C.8), (5C.11) together with 2

ˆ,1 , ;   , ,p p pkθ θ θ θ∞∈ ∈L L  we obtain 
 

0
0

,T n
f f

c
m c gmθ ω α

α
∗

≤ +  

 
where 

*

2
0

2 2 2 2 2 2 1/ 21
0 2( | | (| | | | )) .n

s pg m
α

θ α θ ε θ+ + + ∈L  

 
Step 3. Use the B–G lemma to establish signal boundedness This step is the same as 
Step 3 of (the outline of ) the proof of Theorem 5.5.1. 
 
Step 4. Show that the tracking error converges to zero Using 0

*
0

cT T

c
θ ω θ ω=  in 

(5.117), we have  
 

*
1 * *

0 0 0

1 1 1
( ) .T T T

p m m p m me y y W u W W
c c c

θ ω θ ω θ ω
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Applying Lemma A.11.1 and substituting (5C.10), we obtain 
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( ) 0
1 1 2

0 0

1
( ) ( ) ( ) ( ) .T T

c b c b

c
e e W s W s W s W s

c c
ω θ ω θ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= + −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
Using boundedness of all the signals and parameter estimates, (5C.8), and 2, ,s pmε θ θ ∈L , 
this implies that 1 2e ∈L . Using similar arguments as in the proof of Theorem 5.5.1, we 
have 1e ∞∈L . Therefore, using Lemma A.4.7, we establish that 1( ) 0e t →  as t →∞ .    
 
 
5.7.2 Robust Direct MRAC 
 
Lemma 5.7.8.  Consider the plant equation (5.166) and the MRAC scheme (5.168), 
(5.169). For any 0 0δ >  and any 0(0, ]δ δ∈ , the fictitious normalizing signal  
 

2 22 1 ,f p pm u y+ +  
 
where ( )

2t δ
⋅ ⋅  denotes the 2δL  norm,5 satisfies the following: 

(i) 1 2 , , .f f f s fm m m m mω ω ω ∞/ , / / / ∈L  
(ii) If θ ∞∈L  and ( )W s  is a proper transfer function with all its poles in 

0Re[ ] / 2s δ<− , then in addition to (i), ( ) ,p f p f f fu m y m m W s mω ω/ , / , / , /  

p f fpm myu ∞/ , / ∈L . 

(iii)  If r θ ∞, ∈L , then in addition to (i) and (ii), fmω ∞/ ∈L .  
(iv)  For 0δ δ= , fm = sm . 
 

Proof. (i) Using the same arguments as in the proof of Lemma 5.5.2(i), we have  

1 2 ,f f fm m mω ω ω ∞/ , / / ∈L . Using 
0 0

2 2 2 22

2 2 2 2
1 1s pt pt pt ptm u y u y

δ δ δ δ
= + + ≤ + + , we 

further have s fm m ∞/ ∈L .  
 (ii) Rewriting the equation for 1 p me y y= −   right before (5.169) as 
 

( ) ( ) ,T
p m my W s d W s rρ θ ω ρ η ρ∗ ∗ ∗= + + +  

 
and using the expressions for ,dη , the fact that m m mW W, Δ  are strictly proper with all 

their poles in 0Re[ ] 2s δ<− / , and ,θ θ ∞∈L , we establish that  
 

( ) ;p p fy t c c u c cm cω≤ + + ≤ +  
 
i.e., p fy m ∞/ ∈L . Using (i), this further implies that fmω ∞/ ∈L . Hence, since T

pu θ ω=  

and , fmθ ω ∞/ ∈L , we also have pp

f f

uu

m m ∞, ∈L . Using Lemma A.5.2, we further have 

( ) fW s mω/ . Finally, fp my ∞/ ∈L  follows by taking the derivative of both sides of 
 

( ) ( ) ,T
p m my W s d W s rρ θ ω ρ η ρ∗ ∗ ∗= + + +  

 
                                                           
5 The same notation is used in the proofs below. 
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observing that 1 ( )

0 0( )( ) ( )
T s

m m p fsd sW s s u cd cm cdθ α

δ
η

∗Λ−
Λ

∞
+ ≤ Δ + ≤ +  and that 

( )msW s  is proper. 
 (iii) The result is established using the same arguments as in the proof of Lemma 
5.5.2(iii). 
 (iv) The result follows by definition.      
 
 
Proof of Theorem 5.7.5. 
 
Step 1. Express the plant input and output in terms of the parameter error term 
θ ωT .  From (5.137), (5.138), we have  

( )

( ) ( )

0 0 1

0 01 0 2 3

0 0 1

01 0 2 3 1 0 2 3

1
,

1
,

T
T

p T T

T
p T T T T

G c
y r

c cG

c G D
u r

cG G

θ α
θ ω η

θ α θ α θ

θ ω η
θ α θ α θ θ α θ α θ

⎡ ⎤∗ ∗⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∗ ∗∗ ∗ ∗ ⎢ ⎥
⎢ ⎥⎣ ⎦

∗ ∗

∗∗ ∗ ∗ ∗ ∗ ∗

Λ Λ−
= + +

ΛΛ− − + Λ

⎡ ⎤Λ ⎢ ⎥= + +⎢ ⎥Λ− − + Λ Λ− − + Λ⎣ ⎦

 

  
where ( )1m p m uu dη Δ + Δ + . Substituting (5.139),  we obtain 
 

*
0

1
0 *

0

1
,

1
,

T
p m y

T
p m u

y W r
c

u G W r
c

θ ω η

θ ω η−

⎛ ⎞⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

 
where 2 3 1

0 0

  
T T

u m y mc c
W Wθ α θ θ αη η η η

∗ ∗ ∗

∗ ∗

+ Λ Λ−

Λ Λ
, . Since 1

0m mW G W−,  are stable, applying 

Lemma A.5.2, this implies 
 

1
0

0

2 3
0

0

,

,

T
T T

p m m p m m f

T
T T

p m m p m m f

y c c W u cd c c c W m
c

u c c W u cd c c c W m
c

δ δ
δ

δ δ
δ

θ α
θ ω θ ω

θ α θ
θ ω θ ω

∗

∗ ∞ ∞
∞

∗ ∗

∗ ∞ ∞
∞

Λ−
≤ + + Δ + ≤ + + Δ

Λ

+ Λ
≤ + + Δ + ≤ + + Δ

Λ

 

 
i.e., 

2 22 2T
f m m fm c c c W m

δ
θ ω

∞
≤ + + Δ , where c  denotes a generic positive constant. 

 
Step 2. Use the swapping lemmas and properties of the 2L δ  norm to bound || ||θ ωT  
from above with terms that are guaranteed by the robust adaptive laws to have 
small gains in the m.s.s. Using the same notation and the same steps as in the proof of 
Theorem 5.5.1, we have 
 

 ( )1
1 ( ) .T T T T T

m m c bF FW W W Wθ ω θ ω θ ω θ ω ω θ− ⎡ ⎤⎡ ⎤= + + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 (5C.12) 

 
Using (5.169), we get 
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( ) ( ) ( ) ( )2 * * * ( )T T T T T T
s m m m c bm W d W W d W Wε ρ θ φ θ ω η ρ θ φ θ ω ρ θ ω η ρ ω θ= + + + − + = + + −

 
and hence 
 

( )
2

* *
( ) .T Ts

m c b

m
W W W d

ε ρ
θ ω ω θ η

ρ ρ
= + − −  

 
Substituting in (5C.12), we obtain 
 

( ) [ ]
1

2 1
1 *

( ) .T T T Tm
s c b m

FW
F m W W FW dθ ω θ ω θ ω ε ρ ω θ η

ρ

−
−⎡ ⎤⎡ ⎤= + + + − +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
Following the same steps as in the proof of Theorem 5.5.1, we obtain 
 

( ) ( )2
0

0

0 0
0

( )

         ,

T T T k T
s c b

k
f f

c
c m W W d

c
c gm m c cd

θ ω θ ω θ ω α ε ω θ η
α

α
α ∞

⎛ ⎞⎟⎜≤ + + + + + ⎟⎜ ⎟⎜⎝ ⎠

≤ + + Δ +
 

 
where  

( )
2

2
22 2 2 2 0

0 22 2
0

k
s

s

d
g m

m

θ
α ε θ

α

⎛ ⎞⎟⎜ ⎟= + + ∈ Δ +⎜ ⎟⎜ ⎟⎜⎝ ⎠
S   

 
since ( )2 2 2 2

0,s s sm m d mε θ η∈ +S  and 2 smη ≤Δ .  
 
Step 3. Use the B–G lemma to establish boundedness This step is explained in detail in 
the outline of the proof.   
 
Step 4. Establish bounds for the tracking error 1e . It follows from (5.169) that  
 

2
1 .se mε ρξ= +  

 
Since 2 2 2 2, ( )s s sm m d mε ε ρ η, ∈ +S  and smξ ∞, ∈L , it follows that 1e ∈  

2 2 2 2( )s sm d mη +S . By definition of Δ , this implies that 2 2
1 0( )e d∈ Δ +S , i.e.,  

 

2 2 2
1 0

1
( )   0, 0.

t T

t

c
e d c d t T

T T
τ

+

≤ Δ + + ∀ ≥ >∫  

 
Step 5. Establish convergence of the estimated parameter and tracking errors to 
residual sets  From the definition of φ  we have 
 

( ) ( )
( ) , , , .

( ) ( )

TT T

m p p p

s s
W s u y y r

s s

α α
φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥Λ Λ⎣ ⎦

 

 
Using 1( )p my W s r e= +  and (5.166), we have  
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1 1
0 0 1( ) ( )( ( ) ) ,p p y m yu G s y G s W s r eη η− −= − = + −  

 
where ( )( )y m p u us u d dη =Δ + + , and hence  
  

,m eφ φ φ= +  
 
 where  
 

[ ]

[ ]

1
0

1
0 1 1

( ) ( )
( ) ( ) ( ) , ( ) , ( ),1 ,

( ) ( )

( ) ( ) ( )
( ) ( ) , ,1,0 ( ) ,0 .

( ) ( ) ( )

TT T

m m m m m

T TT T T
T

e m m n y

s s
W s G s W s W s W s r

s s

s s s
W s G s e W s

s s s

α α
φ

α α α
φ η

−

−
+

⎡ ⎤
⎢ ⎥= ⎢ ⎥Λ Λ⎣ ⎦
⎡ ⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥Λ Λ Λ⎣ ⎦ ⎣ ⎦

 

 
Lemma 3.11.6 implies that mφ  is PE with level 2 2

0 0( )O dα > Δ +  if r  is dominantly rich 
and p pZ R,  are coprime. Hence there exist 0T >  such that  
 

0

1
( ) ( )    0.

t T
T

m m

t

d I t
T

φ τ φ τ τ α
+

≥ ∀ ≥∫  

 
Furthermore, since 2 2

1 0, ( )ye dη ∈ Δ +S  and pu ∞∈L , we have 2 2
0( )e dφ ∈ Δ +S  and 

hence 
  

2 20
0

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2

                                ( )
2

t lT t lT t lT
T T T

m m e e

t t t

d d d
lT lT lT

c
c d I

lT

φ τ φ τ τ φ τ φ τ τ φ τ φ τ τ

α

+ + +

≥ −

⎛ ⎞⎟⎜≥ − Δ + − ⎟⎜ ⎟⎟⎜⎝ ⎠

∫ ∫ ∫
 

 
for any positive integer l . Therefore, for any l  satisfying 0

8
c

lT

α<  and for 
02 2

0 8( )c d αΔ + < , we have 
 

01
( ) ( ) ,

4

t lT
T

t

d I
lT

α
φ τ φ τ τ

+

≥∫  

 
which implies that φ  is PE. 

Applying the arguments in the proof of Theorem 3.12.2, we establish that when φ  is 

PE, (5.169) guarantees that θ  converges to a residual set whose size is of the order of the 
modeling error; i.e., θ  satisfies 0| ( ) | ( ) ( ),t c d r tθθ ≤ Δ+ +  where lim ( ) 0t r tθ→∞ =  and 
the convergence is exponentially fast. From (5.171), we have 
 

1
0

1
( ) ( ) .T

m ye t W s
c

θ ω η
∗

⎡ ⎤= +⎢ ⎥⎣ ⎦  

 
Therefore, since ω ∞∈L  and 2 0( )y c dη| |≤ Δ + , we obtain 
 



Page 5C.19 Chapter 5. Complementary Material 
 
  

1 0( ) ( ) ( ),ee t c d cr t≤ Δ+ +  
 
where e mr W rθ⎡ ⎤⎣ ⎦ . Exponential convergence of ( )r tθ  to zero implies that ( ) 0er t →  

exponentially as t →∞  as well. Thus, we have established that 1,e θ  converges 
exponetially to the residual set S  defined in the theorem.      
 
 
5.10 Examples Using the Adaptive Control Toolbox 
 
The MRC and MRAC algorithms presented in this chapter can be implemented using a 
set of MATLAB functions and the Simulink block Adaptive Controller provided 
in the Adaptive Control Toolbox. For implementation of MRAC algorithms these tools 
need to be used together with the PI functions or blocks introduced in section 3.16. In this 
section, we demonstrate use of the Adaptive Control Toolbox in various MRC and 
MRAC problems via a number of simulation examples.     
 
5.10.1 MRC 
 
In section 5.3 we have seen that for a given plant of the form (5.73) and a reference 
model of the form (5.76), if the plant parameters are known, then an MRC scheme can be 
constructed to force the closed-loop system (the integration of the plant (5.73) and the 
MRC) to behave as the reference model. The control parameters of this MRC scheme are 
obtained by solving (5.84). The MATLAB function mrcpoly can be used to solve 
(5.84) for a given design polynomial 0 ( )sΛ . Denoting the coefficient vectors of 

( ), ( ),Z s R s 0( ), ( ), ( )m mZ s R s sΛ  as Z,R,Zm,Rm,L0, respectively, 

 
[thetau,thetay,thetar,RETYPE]=mrcpoly(Z,R,Zm,Rm,L0) 
 
returns the parameter vectors *

uθ , *
yθ , *

rθ . RETYPE is returned as 0 if the equation 
solving process is successful and as –1 if it fails.  
 
Example 5.10.1 Consider the plant  2

1

( 3)s s
y u

+
= . It is necessary to choose u  so that y  

tracks the reference signal my  of the reference model 3
1

( 1)m s
y r

+
=  with ( )r t =  

61 sin(4 )t π+ + .  The control signal for this task can be generated as  
 

[ ]
( )

( )( )
, ( ) ,  1 ,

( )

s
TT T s

u y r

ys
u u r s s

s y

αα
θ θ θ α∗ ∗ ∗Λ

⎡ ⎤
⎢ ⎥= + + =⎢ ⎥Λ ⎢ ⎥⎣ ⎦

 

 
choosing the degree of 0( ) ( )s sΛ =Λ  as 1 2n− = . Fixing 2

0( ) ( ) 1s s s sΛ =Λ = + + ,  

uθ
∗ , yθ

∗ , rθ
∗  can be determined using mrcpoly: 

 
Zp = 1; 
Rp = [1 6 9 0]; 
Zm = 1; 
Rm = [1 3 3 1]; 
Lambda0 = [1 1 1]; 
[thetau, thetay, thetar, RETYPE] = 
mrcpoly(Zp,Rp,Zm,Rm,Lambda0) 
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The resultant parameter vectors are * [3 9]T

uθ = − , * [51 36 35]yθ = − , * 1rθ = , and 
the resultant control law is 
 

 
2 2

3 9 51 36
35 .

1 1

s s
u u y y r

s s s s

− −
= + + +

+ + + +
  

 
 

 
5.10.2 Direct MRAC 
 
When the plant parameters are unknown, we can no longer solve (5.84) to obtain the 
controller parameters. Instead, we need to use an adaptive control scheme which 
produces the estimates of the control parameters directly based on an appropriate 
parametric model involving these control parameters (direct adaptive control), or which 
first produces the estimates of the plant parameters based on another appropriate 
parametric model and then calculates the control parameters using these plant parameter 
estimates (indirect).  A set of direct MRAC schemes have been introduced in sections 5.4 
and 5.5, and some indirect MRAC schemes in section 5.6.  
 The direct MRAC schemes with normalized adaptive laws of section 5.5 can be 
implemented using the MATLAB functions umrcdrl, umrcdrb or the Simulink block 
Adaptive Controller of the Adaptive Control Toolbox, incorporated with the 
parameter identification functions (or the Simulink block Parameter Estimator) 
described in Chapter 3. umrcdrl is used for schemes based on SPM or DPM, while 
umrcdrb is for B-SPM and B-DPM. Examples 5.10.2–5.10.7 demonstrate various uses 
of these tools.  
 
Example 5.10.2 Consider the plant and the reference model of Example 5.10.1. The 
corresponding linear SPM can be written as   

 
*Tz θ φ=  

 
where  

 

( ) ( )

[ ]

* * * *

3 2

,  ,  ,

( )

( ) ( ) ,  ( ) ( ) ,  ( ) ,  ,

,  11 ( )
( ) , ( ) .

( )( 1) 1

TT T
u y r

m

TT T

m m m

T

m

z W s u

W s H s u W s H s y W s y y

ss
W s H s

ss s s

θ θ θ θ

φ

α

⎡ ⎤= ⎢ ⎥⎣ ⎦
=

⎡ ⎤= ⎢ ⎥⎣ ⎦

= = =
Λ+ + +

 

 
In Example 5.10.1, we have calculated  the parameter vectors as * [3 9]T

uθ = − , 
* [51 36 35]yθ = − , * 1rθ = , and the control law as 2 2

3 9 51 36

1 1
35s s

s s s s
u u y y r− −

+ + + +
= + + + . 

Now, we can generate the control signal as well as the signals in the SPM using the 
following code (added to the code of Example 5.10.1): 
 
Lambda = conv(Zm, Lambda0); 
theta = [thetau(:);thetay(:);thetar(:)]; 
dt = 0.01;                % Time increment for simulation (sec). 
t = [0:dt:20];            % Process time (sec). 
tprev = [-5:dt:-dt]; 
ltprev =length(tprev); 
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lt = length(t); 
r = sin(4*t + pi/6) + 1;          % Reference signal. 
rprev = sin(4*tprev + pi/6) + 1; 
% State initialization for the plant: 
[nstate, xp0] = ufilt('init',Zp,Rp,0); 
xp(:,1) = xp0; 
% State initialization for the reference model: 
[nstate, xm0] = ufilt('init',Zm,Rm,0); 
xm(:,1) = xm0; 
for k = 1:ltprev, 
   dxm = ufilt('state',xm(:,1),rprev(k),Zm,Rm); 
   xm(:,1)=xm(:,1) + dt*dxm; 
end 
% State initialization for linear parametric model: 
[nstate xl0] = umrcdrl('init',[3 0],Lambda,Zm,Rm); 
xl(:,1) = xl0; 
% Signal initialization: 
ym(1) = ufilt('output',xm(:,1),Zm,Rm); 
y(1) = 0; 
% Process:  
for k = 1:lt, 
   u(k) = umrcdrl('control',xl(:,k),[y(k) r(k)],[3 
0],Lambda,Zm,Rm,theta); 
   [z(k), phi(:,k)] = umrcdrl('output',xl(:,k),[u(k) 
y(k)],[3 0],Lambda,Zm,Rm); 
   dxl = umrcdrl('state',xl(:,k),[u(k) y(k)],Lambda,Zm,Rm); 
   xl(:,k+1)=xl(:,k) + dt*dxl; 
   dxm = ufilt('state',xm(:,k),r(k),Zm,Rm); 
   xm(:,k+1)=xm(:,k) + dt*dxm; 
   ym(k+1) = ufilt('output',xm(:,k+1),Zm,Rm); 
   dxp = ufilt('state',xp(:,k),u(k),Zp,Rp); 
   xp(:,k+1)=xp(:,k) + dt*dxp; 
   y(k+1) = ufilt('output',xp(:,k+1),Zp,Rp); 
end 
% Outputs: 
ym = ym(1:lt); 
y = y(1:lt); 
 
The results are shown in Figures 5C.1 and 5C.2. Another means of simulation is using the 
Simulink block Adaptive Controller. One can use the scheme shown in Figure 
5C.3, and choose the appropriate options and enter appropriate parameters in the menus 
of Adaptive Controller.    
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Figure 5C.1  Output and control signals of Example 5.10.2. 

 
 
 
 

 
 

Figure 5C.2  Linear parametric model signals of Example 5.10.2. 
 
 
 
 
 



Page 5C.23 Chapter 5. Complementary Material 
 
  

r(t)

u(t)

z

z(t)

y_m

ym(t)

u

y

y(t)

t

time

theta

theta

phi

phi(t)

T.1

Sine Wave

Relay
Product

1

s  +6s  +9s3 2

Plant

1

s  +3s  +3s+13 2

Model

1

Constant

Clock

Adaptive
Controller

Adaptive Controller

 
Figure 5C.3  Simulink scheme to generate the control signal in Example 5.10.2. 

 
Example 5.10.3 Consider, again, the plant and the reference model of  Example 5.10.1. 
This time, let us assume that we don’t know any information about *θ , except that  

*
60.1 / 10p mk kθ≤ = ≤ . Now we need to use a parameter identification algorithm to 

estimate *θ . For this task, we can modify the Simulink scheme of Figure 5C.3 as shown 
in Figure 5C.4. In this scheme, Parameter Estimator is incorporated into 
Adaptive Controller.  The parameter identification algorithm is selected to be LS 
with forgetting factor 1β =  and initial covariance 0 10 IP = . Knowledge about *

6θ  is 
used for parameter projection, and θ  is initialized as [0 0 0 0 0 0.1]T . The 
results are plotted in Figures 5C.5 and 5C.6. Although the parameter estimation is not 
successful, as seen in Figure 5C.6, Figure 5C.5 shows that control and tracking are 
successful.             
 Above, one may prefer to use the MATLAB function umrcdrl incorporated with 
one of the MATLAB functions for PI, e.g., ucgrad (see Chapter 3), instead of using 
Simulink as well.    
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Figure 5C.4  Simulink scheme to generate the control signal in Example 5.10.3. 

 
 

Figure 5C.5  Output and control signals of Example 5.10.3. 
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Figure 5C.6  Linear model parameter estimates of Example 5.10.3. 
 
 
Example 5.10.4 Consider the scalar plant 
 

,x ax bu= +  
 

where a, b  are unknown parameters but b is known to be nonnegative. The objective is to 
choose an appropriate control law u such that all signals in the closed-loop system are 
bounded and x tracks the state mx  of the reference model given by 
 

m mx x r=− +  
 
for a known reference signal ( )r t . 
 The plant transfer function is ( ) ,b

s aG s −=  and the reference model transfer function 

is 1
1( )m sW s += . So, we can construct the corresponding MRC as 

 
* *
1 2u x rθ θ= + , 

 
since ( )

( )( ) 1s
sH s α

Λ= = . Here * *
1 2and θ θ  can be estimated based  on the SPM *Tz θ φ= , 

where  
 

1 1
,   ,

1 1

T

z u x x
s s

φ
⎡ ⎤
⎢ ⎥= =
⎢ ⎥+ +⎣ ⎦

. 

 
Using *Tz θ φ= and b

s ax u−= , we can easily see that * 1
1

a
bθ − −=  and * 1

2 bθ = . Now let us 
simulate the plant, estimation of the parameters, and generation of the MRC signal for 
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00.5,  2,  0.5,  anda b x= = =  6( ) 1 sin(4 )r t t π= + + . The Simulink blocks Parameter 
Estimator and Adaptive Controller are used for simulation. The PI algorithm 
is selected to be LS with forgetting factor 1β =  and  0 10 IP = , θ  is initialized as 
[0 0.1]T , and parameter projection for *

2θ  is used assuming that *
20.1 10θ≤ ≤ , as in 

Example 5.10.3. The results plotted in Figures 5C.7 and 5C.8 show that both the 
estimation and the tracking are successful.      
 

 
Figure 5C.7  Output and control signals of Example 5.10.4. 
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Figure 5C.8  Linear model parameter estimates of Example 5.10.4. 

 
 

 
Example 5.10.5 This example is the bilinear counterpart of Example 5.10.2. The B-SPM 
for the system in Example 5.10.2 can be constructed as 
   

( )* *
1

Tz zρ θ φ= + , 
 
where  

 

( ) ( )

[ ]

* * * * *
*

1

3 2

1
, ,

, ( ) ,

( ) ( ) , ( ) ( ) , ( ) , , ( ) ,

11 ( )
( ) , ( ) .

( )( 1) 1

TT T
u y r

r

m m m

TT T

m m m m m

T

m

z y y y W s r

W s H s u W s H s y W s y y z W s u

ss
W s H s

ss s s

θ θ θ θ ρ
θ

φ

α

⎡ ⎤= =⎢ ⎥⎣ ⎦

= − =

⎡ ⎤=− =⎢ ⎥⎣ ⎦

= = =
Λ+ + +

 

 
The control signal as well as the other signals in the B-SPM can be generated using the 
following lines instead of the corresponding lines in Example 5.10.2: 
 
[nstate xl0] = umrcdrb('init',[3 0],Lambda,Zm,Rm); 
u(k) = umrcdrb('control',xl(:,k),[y(k) r(k)],[3 
0],Lambda,Zm,Rm,theta); 
[z(k),phi(:,k),z1(k)]=umrcdrb('output',xl(:,k),[u(k) y(k) 
r(k)],...[3 0],Lambda,Zm,Rm); 
dxl = umrcdrb('state',xl(:,k),[u(k) y(k) r(k)],Lambda,Zm,Rm);  
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The results are shown in Figures 5C.9 and 5C.10. One can use the Simulink block 
Adaptive Controller for simulation as well.    
 

 
Figure 5C.9  Output and control signals of Example 5.10.5. 

 
 

Figure 5C.10  B-SPM signals in Example 5.10.5. 
 
 
Example 5.10.6 This example is the bilinear counterpart of Example 5.10.3. The B-SPM 
constructed in Example 5.10.5 is used for parameter estimation. Instead of the LS 
algorithm, a gradient algorithm with 100 IΓ= , 100γ = , and 1sm =  is used, and 

6 (0) 1/ (0)θ ρ=  is selected to be 1. The results are shown in Figures 5C.11 and 5C.12.   
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Figure 5C.11  Output and control signals in Example 5.10.6. 

 
 

 
Figure 5C.12  B-SPM parameter estimates of Example 5.10.6. 

 
Example 5.10.7 This example is the bilinear counterpart of Example 5.10.4. The B-SPM 
for the system considered in Example 5.10.4 can be constructed as * *

1( )Tz zρ θ φ= + , 
where  
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* * * *
1 2 *

2

1

1
, ,

1
, ,

1

1 1
, , .

1 1

T

m m

T

m

z x x x r
s

x x z u
s s

θ θ θ ρ
θ

φ

⎡ ⎤= =⎢ ⎥⎣ ⎦

= − =
+

⎡ ⎤
⎢ ⎥=− =
⎢ ⎥+ +⎣ ⎦

 

 
Instead of the LS algorithm of Example 5.10.4, a gradient algorithm with 100 IΓ= , 

100γ = , and 1sm =  is used, and 2 (0) 1/ (0)θ ρ=  is chosen to be 1. The results are 
shown in Figures 5C.13 and 5C.14.    
 
 

 

 
Figure 5C.13  Output and control signals of Example 5.10.7. 
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Figure 5C.14  Linear model parameter estimates of Example 5.10.7. 

 
 
5.10.3 Indirect MRAC 
 
The indirect MRAC schemes of section 5.7 can be implemented using the MATLAB 
functions mrcpoly, umrcidr or the Simulink block Adaptive Controller of 
the Adaptive Control Toolbox, incorporated with the PI functions (or the Simulink block 
Parameter Estimator) described in Chapter 3. As mentioned before, each indirect 
MRAC scheme is composed of a PI algorithm to generate the estimates of the plant 
parameters, and a control law to generate the control signal using these plant parameter 
estimates. The task of the function mrcpoly is to calculate the control parameters in this 
control law based on (5.133). umrcidr generates the control signal as well as the other 
signals involved in the parametric model used in PI. The uses of the indirect MRAC tools 
of the Adaptive Control Toolbox are demonstrated in the following examples.  
 
Example 5.10.8 Consider the plant and the reference model of  Example 5.10.1. Let us 
assume that we don’t know any information about the plant, except that  
0.1 / 10p mk k≤ ≤ . We want to perform the control task of Example 5.10.3 using the 
indirect MRAC. We can use the Simulink scheme shown in Figure 5C.4, changing only 
the entries of the Adaptive Controller ( ( )p sΛ  is selected to be 

( ) ( 2) ( )p s s sΛ = + Λ ) and the Parameter Estimator blocks.  The PI algorithm is 
again selected to be LS with forgetting factor 1β =  and  0 10 IP = . θ  is initialized as 

0 [1,  1,  1,  1]Tθ = , and parameter projection is not used. The results are plotted in Figures 
5C.15 and 5C.16.  
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Figure 5C.15  Output and control signals of Example 5.10.8. 
 

 
Figure 5C.16  SPM parameter estimate 0 2 1 0

ˆ ˆ ˆ ˆ
T

b a a aθ ⎡ ⎤= ⎢ ⎥⎣ ⎦  of Example 5.10.8. 

 
As above, one may prefer to use the MATLAB function umrcidr incorporated with 
one of the MATLAB functions for parameter identification, e.g., ucgrad (see Chapter 
3), instead of using Simulink.      
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Example 5.10.9 Consider the scalar plant of Example 5.10.4 with the same reference 
signal. We want to perform the same control task using indirect MRAC. Choosing 

( ) 2p s sΛ = + , parameter estimation is based on the linear model *Tz θ φ= , where 
  

[ ]* 1 1
,    ,    ,   

2 2 2

T
T

p

s
z y b a u y

s s s
θ φ

⎡ ⎤
⎢ ⎥= = − = −
⎢ ⎥+ + +⎣ ⎦

. 

 
The Simulink blocks Parameter Estimator and Adaptive Controller are 
used for simulation. The PI algorithm is selected to be LS with forgetting factor 1β =  
and  0 10 IP = , θ  is initialized as 0 [1,  1]Tθ = , and parameter projection is not used. The 
results plotted in Figures 5C.17 and 5C.18 show that both the estimation and the tracking 
are successful.     
 

 
Figure 5C.17  Output and control signals of Example 5.10.9. 
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Figure 5C.18  SPM parameter estimate 1 0

ˆ ˆ[ ]Tb aθ =  in Example 5.10.9. 
 
 
 
5.10.4 Robust MRAC 
 
Example 5.10.10 Consider the scalar plant of Example 5.10.4. In this example we will 
consider the existence of a multiplicative plant disturbance 2

1( ) s
m ss μ

μ
−
+Δ = ; i.e., we will 

assume that 
 

( ) 1
1 ( )  .

1m

b b s
x s u u

s a s a s

μ
μ

−
= +Δ =

− − +
 

 
Let 00.5,  2,  0.5,  anda b x= = =  6( ) 1 sin(4 )r t t π= + +  as in Example 5.10.4, and let 

0.2μ= . If we use the PI algorithm and the MRC law of Example 5.10.4 as they are, we 
obtain the results shown in Figures 5C.19 and 5C.20. As can be seen in these figures, 1θ  
and x diverge, and the adaptive control design fails. Next, we apply the robust PI 
algorithm with dead zone modification ( 0 0.05, 1sg m= = ). The results plotted in Figures 
5C.21 and 5C.22 show that the parameter estimates do not diverge and the tracking error 
remains in an allowable range.      
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 Figure 5C.19  Output and control signals of Example 5.10.10 without robustness 
modification. 

 

 
Figure 5C.20  SPM parameters of Example 5.10.10 without robustness modification. 
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 Figure 5C.21  Output and control signals of Example 5.10.10 with robustness 
modification. 

 

 
 Figure 5C.22  SPM parameter estimates of Example 5.10.10 with robustness 
modification. 
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