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Chapter 6 
 

Complementary Material 
 
 

   
 
6.3 APPC Schemes: Polynomial Approach 
 
Proof of Theorem 6.3.2.    
 
Step 1. We establish the expressions (6.48) We rewrite the control law (6.39) and the 
normalized estimation error as 
 

 
2

1 1ˆ ˆ ( ),

1 1
ˆ ˆ .

m p p m

s p p pp p
p p

LQ u P y y

m z y uR Zε θ φ

=− −
Λ Λ

= − = −
Λ Λ

  (6C.1) 

 
( ) ( )ps sΛ ,Λ are monic Hurwitz polynomials of degree 1n q+ − , n , respectively,  

 
 1 1

ˆˆ ( ) ( ).n
a n b np p

s s sZR θ α θ α− −= + , =  (6C.2) 

 
The proof is simplified if without loss of generality we design 
 
 ( ) ( ) ( ),p qs s sΛ =Λ Λ  (6C.3) 
 
where ( )q sΛ  is an arbitrary  monic Hurwitz polynomial of degree 1q−  if 2q ≥ and 

( )q sΛ =1 for q<2. We should point out that the same analysis can also be carried out with 

pΛ,Λ  being Hurwitz but otherwise arbitrary, at the expense of some additional algebra. 
We leave this more general case as an exercise for the reader. 

Let us define  

 1 1
f p f pu u y y,

Λ Λ
 (6C.4) 

 
 and write (6C.1) as 

 1

2

ˆ ˆ ,

ˆ ˆ ,

f m f m

p q f p q f s

Py LQ u y

R y Z u mε

+ =

Λ − Λ =
 (6C.5) 

 
where 
 1

1
ˆ .m my P y L∞Λ ∈  (6C.6)  
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Use the expressions 
 
 1

1 22 2
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ),n q

p q n q p q n qR s s s s Z s s sα αθ θ
+ −

+ − + −Λ = + , Λ =  (6C.7) 
  
 1 1

0 2 2
ˆ ˆ( ) ( ) ( ) ( ) ( )n q n q

n q m n qP s p s s L s Q s s sp lα α+ − + −
+ − + −= + , = +  (6C.8) 

 
in (6C.5) to obtain  
 

 
( 1) 2

1 22 2

( 1) 2
1 20 2 0 2 0 1

( ) ( ) ,

( ) ( ) ( ) ( ) .

n q
f n q f n q f s

n q
f n q f n q f s m

y s y s u m

u p p s y p l s u p m y

α α εθ θ

α α εθ θ

+ −
+ − + −

+ −
+ − + −

=− + +

= − − + − +
 (6C.9) 

 
 
Define the state 
 

( 2) ( 2) .n q n q
ff f f ffx y … y u … uy u

⎡ ⎤+ − + −⎢ ⎥
⎢ ⎥⎣ ⎦

, , , , , , ,  
 
Then (6C.9) can be expressed in the form 
 
 2

1 2 1( ) ( ) ,s mx A t x b t m b yε= + +  (6C.10) 
 
where 
 

 

1 2

2 ( 2) ( 1)

1 2

( 2) ( 1) 2

0

0
( ) ,

0

0

T T

n q n q x n q

T T T T
o o

n q x n q n q

I

A t
p p p l

I

θ θ

θ θ

+ − + − + −

+ − + − + −

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

Ο⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ο⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6C.11) 

 
 
where ( 2) ( 1)n q x n q+ − + −Ο is an ( 2) ( 1)n q n q+ − × + −  matrix with all elements equal to 
zero. Since 
 

( 1)
2 ( ) ,n q

p f f n q fu u u s uλ α+ −
+ −= Λ = +  

 ( 1)
2 ( ) ,n q

p f f n q fy y y s yλ α+ −
+ −= Λ = +  (6C.12) 

 
where λ  is the coefficient vector of 1( ) n qs s + −Λ − , it follows that 
 

 1 1 1

1 1 1

[0 0 1 0 0] [0 0 ] ,

[1 0 0 0 0] [ 0 0] .

p

n q n q n q

p

n q n q n q

u … … x … x

y … … x … x

λ

λ
+ − + − + −

+ − + − + −

= , , , , , , + , , ,

= , , , , , , + , , ,
 (6C.13) 
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Step 2. Establish the e.s. of the homogeneous part of (6C.11) We can show that for 
each frozen time t  
 ˆ ˆ ˆ ˆdet( ( )) ,p q m p q qsI A t R LQ P Z A∗− = Λ ⋅ + ⋅ Λ = Λ  (6C.14) 
 
where the last equality is obtained by using the Diophantine equation (6.38). Since 

qΛ , A∗ are Hurwitz, A(t) has eigenvalues with negative real parts at each time t; i.e., A(t) 
is stable at each frozen time t.  

We now need to show that 2( ) ( )A t L A t L∞∈ , ∈  from the properties p Lθ ∞∈  and 

2 ,p Lθ ∈  which are guaranteed by the adaptive law (6.37). In a similar way as in the 
known parameter case, the matching equation (6.38) may be expressed as  
 
 *ˆˆ ,l l lS aβ =  (6C.15) 
 
where ˆ

lS is the Sylvester matrix of ˆ .p mR Q , ˆ
pZ ; *

la is as defined in (6.32); and  
 

ˆ ˆ ˆ ˆˆ[ , ] , [0...0,1, ] .T T
l q q

q

l p l lβ = =  

Using the assumption that the polynomials ˆ
p mR Q  and ˆ

pZ  are strongly coprime at each 

time t , we conclude that their Sylvester matrix ˆ
lS  is uniformly nonsingular; i.e., 

0
ˆdet( )lS ν| |>  for some 0 0ν > . Therefore, p Lθ ∞∈  implies that 1

l lS S L−
∞, ∈ . From 

(6C.15) we have  
 
 1 *ˆˆ ,l ll

S aβ −=  (6C.16) 
  
which implies that ˆ

lβ  is u.b. On the other hand, because p Lθ ∞∈  and 2p Lθ ∈ , it follows 

from the definition of the Sylvester matrix that 2
ˆ

lS L∈ . Noting that  
 

1 1 *ˆˆ ˆˆ ,l l l ll
S S S aβ

− −=−  
  

we have 2
ˆ

l
Lβ ∈ , which is implied by 1ˆ ˆ

l l LS S
−

∞, ∈  and 2
ˆ ( )

l
t LS ∈ . Because the vectors 

1 2 p lθ θ, , ,  are linear combinations of ˆ
p l
θ β,  and all elements in ( )A t  are u.b., we have  

 

ˆ( ) ( ( ) ( ) ),pl
A t c t tθβ≤ | |+| |  

 

which implies that 2( )A t L∈ . Using Theorem A.8.6, it follows that the homogeneous part 
of (6C.10) is e.s.   
 
Step 3. Use the properties of the 2L σ  norm and B–G lemma to establish 
boundedness For clarity of presentation let us denote the 2L δ  norm as || ||⋅ . From 
Lemma A.5.10 and (6C.10) we have  
 
 2 2( )s sx c m c x t c m cε ε≤ + , | |≤ +  (6C.17) 
 
for some 0δ> . We define the fictitious signal 
 
 2 2 21 .f p pm y u+ +  (6C.18) 
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Using (6C.10), (6C.12), (6C.17) and Lemma A.5.10  we can establish that , s fm mφ ≤  
and 
 
 

2 22 2 2 ,f s s fm c c x c m c m m cε ε≤ + + ≤ +  (6C.19) 
i.e.,  

2 ( ) 2 2 2

0
( ) ( ) ( ) .

t
t

f s fm c c e m m dδ τ ε τ τ τ τ− −≤ + ∫  

 
Using the property 2sm Lε ∈ , guaranteed by the adaptive law, using the boundedness of 

fm , and applying the B–G lemma, we can establish that fm L∞∈ . The boundedness of 
the rest of the signals follows from fm L∞∈  and the properties of the 2L δ  norm that is 
used to show that fm  bounds most of the signals from above.   
 
Step 4. Establish that the tracking error converges to zero Let us start with the second 
equation in (6C.1), i.e., 

2 1 1
ˆ ˆ .s p pp p

p p

m y uR Zε = −
Λ Λ

 

 
 Filtering each side of the above equation with 1

qmLQ Λ , where 

  
1

2( ) ( )n
nL s t s s lα−
−, +  

and [1 ]cl l= ,  is the coefficient vector of ˆ( )L s t, , we obtain 
 

 21 1 1 1
ˆ ˆ( ) .m s m p pp p

q q p p

LQ m LQ y uR Zε
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

= −
Λ Λ Λ Λ

 (6C.20) 

 
Using q pΛ=Λ Λ , and applying Lemma A.11.1 (Swapping Lemma 1), we obtain the 
following: 
 

1 2

1 1
ˆ ˆ ˆ ˆ ,m m m m

p p p pp p p p
q p q p

Q Q Q Q
y y r u u rR R Z Z

⎛ ⎞⎟⎜ ⎟⎜= + , = +⎟⎜ ⎟⎜ ⎟Λ Λ Λ Λ Λ Λ⎝ ⎠
 (6C.21) 

where  
 

1 1
1 1 1 2 1 1

( ) ( )
( ) ( ) ( ) ( ) ,n n

a bc b p c b p
p p

s s
r W s W s y r W s W s u

α α
θ θ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜− −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎟ ⎜ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜,⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟Λ Λ⎜ ⎜⎝ ⎠ ⎝ ⎠
 (6C.22) 

 
and W 1 1c bW,  are as defined in Swapping Lemma 1 with m

q

QW Λ= .  

Because p pu y L∞, ∈  and 2a b Lθ θ, ∈ , it follows that 1 2 2r r L, ∈ . Using (6C.21) in 
(6C.20), we obtain 
 

 2
1 2

1
ˆ ˆ( ) m m

m s p pp p
q

Q Q
LQ m L y u r rR Zε

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

= − + −
Λ Λ Λ

 (6C.23) 
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which, due to Q 1 1( )m p m m my Q e y Q e= + = , becomes 
 

 2
1 1 2

1
ˆ ˆ( ) .m m

m s pp p
q

Q Q
LQ m L e r r L uR Zε

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎟ ⎜ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

= + − −
Λ Λ Λ

 (6C.24) 

 
Applying Lemma A.11.4 (Swapping Lemma 4) (i) to the second term in the right-hand 
side of (6C.24), we obtain  
 

 3
ˆ ˆ( , ) ,m m

p p p p

Q Q
L Z u Z L s t u r
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠Λ Λ

 (6C.25) 

 
where  
 

1 3 2 2( ) , ( ) ( , ) ( ) ,
( )

T T m
p n b n b n p

Q
Z s r s F l s u

s
α θ α θ α− − −= =

Λ
 

 
and ( , ) ( )b bF l c lθ θ≤ + . Using the identity ˆ ˆ( , ) ( ) ( , ). ( )m mL s t Q s L s t Q s=  and the 
control law given by the first equation in (6C.1), we obtain 
 

 1

1ˆ ˆ ˆ( , ) ( , ). .m m
p p

Q Q
L s t u L s t u P e= =−

Λ Λ Λ
 (6C.26) 

 
From (6C.26), (6C.25), (6C.24) we obtain 
 

 2
1 1 1 2 3

1 1ˆˆ( ) ( ) .m
m s pp

q

Q
LQ m L e Z P e L r r rRε

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= + + − −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠Λ Λ Λ
 (6C.27) 

 
Using Lemma A.11.4(ii) with 01/ , 1f = Λ Λ = , we can obtain the expressions 
 

 

1 1 4

1 1 5

4 1 1 5 1 1

1ˆ ˆˆ ( , ). ( , ) ,

1 1ˆ ˆ ˆ( , ). ( , ) ,

( ) ( , , , ), ( ) ( , , , ),

m
p mp

p p

T T
n a n b

Q
L e L s t R s t Q e rR

Z P e Z s t P s t e r

r s G s e l r s G s e pα θ α θ− −

⎛ ⎞⎟⎜ = +⎟⎜ ⎟⎜⎝ ⎠Λ Λ
⎛ ⎞⎟⎜ = +⎟⎜ ⎟⎜⎝ ⎠Λ Λ

′

 (6C.28) 

 
where ,G G ′ are as defined in Lemma A.11.4 and ( , ) ( ) ( )T

nX s t s tα θ denotes the 

swapped polynomial ( , ) ( ) ( )T
nX s t t sθ α . Due to 1e L∞∈ and 2, , ,a bl p Lθ θ ∈ it follows 

from the expression of ,G G ′ that 2,G G L′ ∈ . Using (6C.28) in (6C.27), we obtain 
 

( )2
1 1 2 3 4 5

11 ˆ ˆ ˆ ˆ( ) ( , ) ( , ) ( , ) ( , ) ( ) .m s p m p
q

LQ m L s t R s t Q Z s t P s t e L r r r r rε = + + − − + +
Λ Λ

 (6C.29) 

 
Using the matching equation (6.38) and the fact that * *( ) ( )A s A s= due to the constant 
coefficients of * ( )A s , we can write  
 
 * *ˆ ˆ ˆ ˆ( , ). ( , ) ( , ). ( , ) ( ) ( ).p m pL s t R s t Q Z s t P s t A s A s+ = =  (6C.30) 
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Substituting (6C.30) in (6C.29), we obtain 
 

 * 2
1 1 2 3 4 5

1 1
, ( ) ( )m s

q

A e LQ m L r r r r rυ υ ε= − − + − −
Λ Λ

 (6C.31) 

or 

 1 *
.e

A
υ

Λ
=  (6C.32) 

 
Using the fact that 1( ) ( )T

n cL s s lα −= , [1, ]T T
cl l= , we have 

 

2
1 1 2 3 4 5( ) .T m

n c s
q

Q
s l m r r r r rυ α ε−

⎡ ⎤
⎢ ⎥= − + + − −⎢ ⎥Λ⎢ ⎥⎣ ⎦

 

 
Therefore, (6C.32) may be written as  
 

 

2
1 1 0*

0 1 2 1 2 1 1 2*

1 2

2

( ) ,

[ ( ) ( ) ( ) ( ) ],

( , ) ( ) ,

.

T m
n c s

q

T T T
n c n n

m
b n p

Q
e s l m w

A

w s l r r s w s w
A

Q
w F l s u

w G G

α ε

α α α

θ α

−

− − −

−

Λ
= +

Λ

Λ
= − + −

=
Λ

′= +

 (6C.33) 

 
Since 1 2 2, ; , , , ,c pl u L F G G r r L∞

′∈ ∈ ; and * *1 2( ), ( ) mQT
n nA A

s sα αΛ
− −  are strictly proper and 

stable, it follows from Corollary A.5.5 that 0 1 2 2, ,w w w L∈  and 0 0w →  as t →∞ . Let 
us now apply Lemma A.11.1 (Swapping Lemma 1) to the first equation in (6C.33) to 
obtain 
 

 2 21
1 0*

( )[ ( ) ] ,T n m
c s c b s c

q

Q
e l m W s W s m l w

A

α
ε ε− Λ

= + +
Λ

 (6C.34) 

 
where ( ), ( )c bW s W s consist of strictly proper stable transfer functions. Since all the 
transfer functions in (6C.34) are proper with inputs which are bounded and in 2L , it 
follows that 1 2e L L∞∈ ∩ . We can write the plant equation p p p pR y Z u= as 
 

( )p p p p p p py R y Z uΛ + −Λ =  
or  
 

( ) ( )
, .p p p p

p p p p p p p p
p p

R s R
y y Z u y y sZ u

−Λ −Λ
=− + =− +

Λ Λ
 

Since pΛ is monic, stable with the same degree as pR , all the transfer functions in the 
above equations are proper, and the boundedness of ,p py u implies that py is bounded. In 
turn, this implies that 1e is bounded, which together with 1 2e L L∞∈ ∩  implies that 

1 0e →  as t →∞ .      
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6.4  APPC Schemes : State-Space Approach  
 
Proof of Theorem 6.4.3.    
 
Step 1. Develop the closed-loop state error equations We express the tracking error 
equation  

1
1

p
p

p m

Z Q
e u

R Q
=  

 
in the state-space form  
 

 1

1 2 1, ,
0

n q

p

I
e e e C euθ θ

+ −∗ ∗
⎡ ⎤
⎢ ⎥= − + =⎢ ⎥
⎢ ⎥⎣ ⎦

 (6C.35) 

 
where n qe R +∈ , [1 0 0]T n qC … R += , , , ∈ , and 1 2θ θ∗ ∗,  are the coefficient vectors of 

1
n q

p m pR Q s Z Q+− , , respectively. 

Let ˆ
oe e e−   be the state-observation error. Using (6.67) and (6C.35), we obtain  

 

 
1 21

ˆ ˆˆ( ) ,

,

T
c o o

o po o

e A t e K C e

A e ee uθ θ

= +

= + −
 (6C.36) 

 
where 

1

0

n q

o

I
A a

+ −∗
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is a stable matrix; ˆ ˆ ˆ( )c cA t A BK− ; and 1 1 1 2 2 2θ θ θ θ θ θ∗ ∗− , − . Since the polynomials 

1,p p mZ Q R Q have no common unstable zeros it follows using Theorem A.2.5 that there 
exist polynomials  X(s), Y(s) of degree 1n q+ − , with X(s) monic, which satisfy the 
equation 
 
 *

1 .p m pR Q X Z Q Y A+ =  (6C.37) 
 

( )A s∗  is a Hurwitz polynomial of degree 2( ) 1n q+ − and contains all the common stable 
zeros of 1,p p mZ Q R Q if any. Dividing each side of (6C.37) with ( )A s∗  and using it to 
operate on pu , we obtain 

 1

* *
.p m p

p p p

R Q X Q YZ
u u u

A A
+ =  (6C.38) 

 
Using 1m p pQ u Q u=  and p p p pZ u R y= in (6C.38), we obtain  
 

 1 1

* *
.p p

p p p

R XQ Q YR
u u y

A A
= +  (6C.39) 

 
The plant output satisfies  
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 ˆ .p o my C e C e y= + +  (6C.40) 

 
Step 2. Establish e.s. for the homogeneous part of (6C.36) For each frozen time t, we 
have ˆ ˆ ˆdet( ) det( ) ( )c c csI A sI A BK A s∗− = − + =  (where the last equality is obtained using 

(6.63)), which implies that ( )cA t  is stable at each frozen time t. If 1
ˆ ( , ) ( )pZ s t Q s  and 

ˆ ( , ) ( )p mR s t Q s  are strongly coprime, i.e., ˆ ˆ( )A B,  is strongly controllable at each time t, the 

controller gains ˆ
cK  may be calculated at each time t using Ackermann’s formula [3], i.e.,  

 
1 ˆˆ [0 0 0 1] ( ),c c cK … G A A− ∗= , , , ,  

 
 where  

1ˆ ˆˆ ˆ ˆ[ ]n q
cG B AB … A B+ −, , ,  

 
 is the controllability matrix of the pair ˆ ˆ( )A B, . Because ˆ ˆ( )A B,  is assumed to be strongly 
controllable and ˆ ˆA B L∞, ∈  due to p Lθ ∞∈ , we have ˆ

cK L∞∈ . Now, 
  

1 1 1ˆ ˆ ˆ[0 0 0 1] ( ) ( ) .c c c c c c c

d
K … G G G A A G A A

dt
− − ∗ − ∗⎧ ⎫⎪ ⎪⎪ ⎪= , , , , − +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 

 
Because p Lθ ∞∈  and 2p Lθ ∈ , it follows that 2

ˆ|| ( ) ||cK t L∈ , which, in turn, implies that 

2|| ( ) ||cA t L∈ . From cA  being pointwise stable and 
2|| ( ) ||cA t L∈ , we have that ( )cA t  is 

a u.a.s. matrix by applying Theorem A.8.6. Because 0A  is a stable matrix the 
homogeneous part of (6C.36) is e.s.   
 
Step 3. Use the properties of the 2L δ  norm and the B–G lemma to establish 
boundedness Applying Lemmas A.5.9, A.5.10 to (6C.36), (6C.39), (6C.40), we obtain 
 

 

ˆ ,

ˆ ,

ˆ ,

o

p o o

p p o

e c C e

y c C e c e c c C e c

u c e c y c C e c

≤

≤ + + ≤ +

≤ + ≤ +

 (6C.41) 

 
where .  denotes the 2L δ  norm for some 0δ> . 

We relate the term T
oC e  with the estimation error by using (6C.36) to express T

oC e  
as  
 
 1

1 21( ) ( ).T T
po oC e C sI A e uθ θ

−= − −  (6C.42) 
 
Since ( , )oC A  is in the observer canonical form, i.e.,  
 

11
( )

( ) ,
( )

n qT
o

o

s
C sI A

A s

α + −−
∗− =  

where *
0 0( ) det( ),A s sI A= − we have  
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1 21
0

( ),
n in

pi io
i o

s
C e e u

A
θ θ

−

∗
=

= −∑  

 
where 1n n q= + − , 1 2[ ] 1 2i i i in… iθ θ θ θ= , , , , = , . We apply Lemma A.11.1 (Swapping 
Lemma 1) to each term under the summation in (6C.43) to obtain 
 

( )1
1 11 1 1 1

1

( ) ( )
( ) ( )

( ) ( )( ) ( )

n i n i
p

i i ci bi i
po o

s Q ss s
e e W s W s e

s Q sA s A s
θ θ θ

− −

∗ ∗

⎛ ⎞Λ ⎟⎜ ⎟⎜= + ⎟⎜ ⎟⎜ ⎟Λ⎜⎝ ⎠
 

 
 and  
 

( )1
2 2 2

1

( ) ( )
( ) ( ) ,

( ) ( )( ) ( )

n i n i
p

p p pi i ci bi i
po o

s Q ss s
W s W su u u

s Q sA s A s
θ θ θ

− −

∗ ∗

⎛ ⎞Λ ⎟⎜ ⎟⎜= + ⎟⎜ ⎟⎜ ⎟Λ⎜⎝ ⎠
 

  
where 0 1ci biW W i … n q, , = , , + −  are transfer matrices defined in Lemma A.11.1 with 

1( ) ( )( )
n i

p

s
s Q sW s

−

Λ= . Therefore, oC e  can be expressed as 

 

 

1
1 21 10

1 1

1 1 1
1 21 1

1 1

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )( )

n i n i
np

pi io i
p po

p n q n q
p

p po

s Q s s s
C e e ru

s Q s s Q sA s

s Q s s s
e ru

s Q s s Q sA s

θ θ

α α
θ θ

− −

∗ =

+ − + −

∗

⎛ ⎞Λ ⎟⎜ ⎟⎜= − +⎟⎜ ⎟⎜ ⎟Λ Λ⎜⎝ ⎠
⎛ ⎞Λ ⎟⎜ ⎟⎜= − +⎟⎜ ⎟⎜ ⎟Λ Λ⎜⎝ ⎠

∑
 (6C.43) 

where 
 

( ) ( )1
1 1 1 2

0

( ) ( )
( ) ( ) ( ) .

( )

n
p

pci bi bii i
io

s Q s
r W s W s e W s u

A s θ θ∗
=

Λ ⎡ ⎤−⎢ ⎥⎣ ⎦∑  

 
From the definition of 1θ , we have 
 

 

( )

1 1 1 1 1 1

1

( ) ( ) ( )

ˆ ( ) ( ) ( ) ( )

ˆ ( ) ( ) ( ) ( ) ( ),

n q n q n q

n q n q
m p mp

ap m n mp

s s s

s t Q s s R s Q s sR

s t R s Q s s Q sR

α θ α θ αθ

αθ

∗
+ − + − + −

+ +

−

= −

= , − − +

= , − =

 (6C.44) 

 
where a a aθ θ θ∗−  is the parameter error. Similarly,  
 
 2 1 1 1( ) ( ) ( ),n q b ns s Q sα θ αθ + − −=  (6C.45) 
 
where b b bθ θ θ∗− . Using (6C.44) and (6C.45) in (6C.43), we obtain 
 

1
1 1 1 1

1

1
1 1 1

1 1

( ) ( ) ( ) 1 1
( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ,

( ) ( ) ( ) ( )( )

p m
pa bo n n

p po

p m m
a bn p n p

p po

s Q s Q s
C e s e s ru

Q s s sA s

s Q s Q s Q s
s y s u r

Q s s s Q sA s

α αθ θ

α αθ θ

− −∗

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ − −∗ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞Λ ⎟⎜ ⎟⎜= − +⎟⎜ ⎟⎜ ⎟Λ Λ⎜⎝ ⎠

Λ
= − +

Λ Λ

 (6C.46) 
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where the second equality is obtained using 
 

1 1( ) ( ) ( ) ( ) .pm m p m pQ s e Q s y Q s Q s uu= , =  
 
Using the identities 
 

1 1 1 2

1 1
( ) ( )

( ) ( )n p n p
p p

s u s y
s s

α φ α φ− −= , =−
Λ Λ

 

       
and Lemma A.11.1, we obtain the following equalities: 
 

2 1 2
1 1

( ) ( )
( ) ( ) ,

( ) ( ) ( )
m m

a a n p cq bq a
p

Q s Q s
s y W W s

Q s Q s s
φ α φθ θ θ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜− ⎝ ⎠=− +
Λ

 

 

1 1 1
1 1

( ) ( )
( ) ( ) ,

( ) ( ) ( )
m m

b b n p cq bq b
p

Q s Q s
s u W W s

Q s Q s s
φ α φθ θ θ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜− ⎝ ⎠= +
Λ

 

 
where ,cq bqW W are as defined in Swapping Lemma A.11.1 with 

1

( )

( )( ) mQ s

Q sW s = . Using the 
above equalities in (6C.46), we obtain  
 

 2

( ) ( )
,

( )
p m

po

o

s Q s
C e r

A s
φθ∗

Λ
=− +  (6C.47) 

 
where 

( )1
2 1 1 2

( ) ( )
( ) ( ) ( ) ( ) .

( )
p

cq bq cq bqb a
o

s Q s
r r W s W s W s W s

A s
φ φθ θ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∗

Λ
+ +  

 
The normalized estimation error satisfies the equation 
 

2 ,psmε φθ=−  
 
which can be used in (6C.47) to obtain 
 

 2
2

( ) ( )
.

( )
p m

o s

o

s Q s
C e m r

A s
ε

∗

Λ
= +  (6C.48) 

 
Using the definition of the fictitious normalizing signal 2 2 21 || || || ||f p pm u y+ +  and 
Lemma A.5.2, we can show that f s fm m m Lφ ∞/ , / ∈  for some 0δ> . Using these 
properties of fm  applying Lemma A.5.2 in (6C.48), we obtain 
 
 .po s f fC e c m m c mε θ≤ +  (6C.49) 
 
From (6C.41) and in the definition of fm , we have 
  

22 22
01 ,T

f p pm u y c C e c= + + ≤ +  
 
which together with (6C.49) implies 
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222
f s f p fm c m m m cε θ≤ + +  

 or  
22 ,f fm c gm c≤ +  

  
where 2 2 2 2

psg mε θ+| |  and 2g L∈ due to the properties of the adaptive law. If we now 
apply the B–G lemma to the above inequality we can show that fm L∞∈ . From 

fm L∞∈  and the properties of the 2L δ  norm we can establish boundedness for the rest of 
the signals.   
 
Step 4. Convergence of the tracking error to zero Since all signals are bounded we can 
establish that 2( )d

sdt m Lε ∞∈ , which, together with 2
2sm Lε ∈ , implies that 2( ) ( ) 0st m tε →  

and, therefore, ( ) 0p tθ → as t →∞ . From the expressions of 1 2r r,  we can conclude, 

using Corollary A.5.5, that 2 2r L∈  and 2 ( ) 0r t →  as t →∞ . Using 2
2 2sm r Lε , ∈  

and 2 0r →  as t →∞  in (6C.48) and applying Corollary A.5.5, we have that 

2oC e L| |∈ and ( ) 0oC e t| |→  as t →∞ . 
Consider the first equation in (6C.36), i.e.,  

 
ˆ ˆ( ) .c o oe A t e K C e= +  

 
Since ( )cA t  is u.a.s. and 2oC e L| |∈ , 0oC e| |→  as t →∞  we can conclude that 
ˆ 0e →  as t →∞ . Since 1

ˆ
p m oe y y C e C e− = +  (see (6C.39)), it follows that 

1( ) 0e t →  as t →∞  and the proof is complete.      
 
 
6.7.3 Robust APPC: Polynomial Approach 
 
Proof of Theorem 6.7.2.    
 
Step 1. Express p pu ,y  in terms of the estimation error Following exactly the same 
steps as in the proof of Theorem 6.3.2 for the ideal case, we can show that the input pu  
and output py  satisfy the same equations as in (6C.10), expressed as  
 

 

2
1 2

2
1 1 2

2
2 3 4

( ) ( ) ,

,

,

s m

p s m

p s m

x A t x b t m b y

y C x d m d y

u C x d m d y

ε

ε

ε

= + +

= + +

= + +

 (6C.50) 

 
where  1 2, ( ), ( ), ,x A t b t b  and 1 2; 1 2 3 4i kC i d k, = , , = , , ,  are as defined in (6C.10) and 

1
( )

ˆ
mm sP yy Λ= . The modeling error terms due to ( )m us dΔ ,  do not appear explicitly in 

(6C.50). Due to the unmodeled dynamics smε ε, , ( )A t  no longer belong to 2L  as in the 

ideal case, but belong to 
2

2 0( )
m

S fη + . Because 
22
0

2 2

2
2

d

m m

η ≤Δ + , we have 
 

2
2 0
2 02

( ) .s
s

d
m A t S f

m
ε ε

⎛ ⎞⎟⎜ ⎟, , ∈ Δ + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
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Step 2. Establish the u.a.s. property of ( )A t  As in the ideal case, the APPC law 
guarantees that ( ( )) ( )det sI A t A s∗− =  for each time t  where ( )A s∗  is Hurwitz. If we 
apply Theorem A.8.6(ii) to the homogeneous part of (6C.50), we can establish that ( )A t  
is u.a.s. which is equivalent to e.s., provided  
 

 
2

2 0
0 2 2

1
t T

st

d
c f d

T m
τ μ

+
∗

⎛ ⎞⎟⎜ ⎟⎜ +Δ + <⎟⎜ ⎟⎜ ⎟⎝ ⎠
∫  (6C.51) 

 
0t∀ ≥ , any 0T ≥ , and some 0μ∗ > , where 0c ≥  is a finite constant. Because 

2 0sm > , condition (6C.51) may not be satisfied for small 2 0fΔ ,  unless 0d , the upper 
bound for the input disturbance, is zero or sufficiently small. As in the MRAC case, we 
can deal with the disturbance in two different ways. One way is to modify 2 1s dm n= +  to 

2
01s dm n β= + + , where 0β  is chosen to be large enough so that 

2 2
0 0
2

0 2

d d

m
c c μ

β

∗

≤ < , say, so 
that for  

2
0 2( )

2
c f

μ∗

+Δ <  

  
condition (6C.51) is always satisfied and ( )A t  is e.s. The other way is to keep the same 

2
sm  and establish that when  2

sm grows large over an interval of time 1 1 2[ ]I t t= , , say, the 

state-transition matrix ( )t τΦ ,  of ( )A t  satisfies 2 ( )
1( ) k tt k e ττ − −Φ , ≤  t τ∀ ≥  and 1t Iτ, ∈ . 

This property of ( )A t  (when 2
sm  grows large) is used in Step 3 to contradict the 

hypothesis that  2
sm could grow unbounded and conclude boundedness. We proceed as 

follows. 
Let us start by assuming that 2

sm grows unbounded. Because all the elements of the 
state x  are the outputs of strictly proper transfer functions with the same poles as the 
roots of ( )sΛ  and inputs p pu y,   and the roots of ( )sΛ  are located in Re 0[ ] 2s δ<− / , it 

follows from Lemma A.5.2 that 
s

x
m L∞∈ . Because sm m Ly ε ∞, ∈ , it follows from (6C.51) 

that p p

s s

y u

m m L∞, ∈ . Because 2 2
p pu y,  are bounded from above by 2

sm , it follows from the 

equation for 2
sm  that 2

sm  cannot grow faster than an exponential, i.e., 
1 0( )2 2

0 0( ) ( ) 0k t t
s sm t e m t t t−≤ ∀ ≥ ≥  for some 0k > . Because 2 ( )sm t  is assumed to grow 

unbounded, we can find a 0 0t α> >  for any arbitrary constant 2 0t tα> −  such that 
12

2( ) k
sm t e αα> . We have  

 
1 2 01 ( )2 2

2 0( ) ( ),k t tk
s se m t e m tαα −< ≤  

 
 which implies that  
 

2
0 1 2 0ln ( ) ln [ ( )].sm t k t tα α> + − −  

 
Because 2 0t tα> −  and 0 2 2( )t t tα∈ − , , it follows that  
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 2

0 0 2 2( ) ( ).sm t t t tα α> ∀ ∈ − ,  
 
 Let }

2

2
1 sup arg( ( ) )t st mτ τ α≤= = . Then, 2

1( )sm t α=  and 2
1 2( ) [ ),sm t t t tα≥ ∀ ∈ ,  where 

1 2t t α≤ − , i.e., 2 1t t α− ≥ . Let us now consider the behavior of the homogeneous part 
of (6C.50), i.e.,  
 
 ( )Y A t Y=  (6C.52) 
 
over the interval 1 1 2[ )I t t,  for which 2 ( )sm t α≥  and 2 1t t α− ≥ , where 0α>  is an 

arbitrary constant. Because det( ( )) ( )sI A t A s∗− = , i.e., ( )A t  is a pointwise stable matrix, 
the Lyapunov equation  
 
 ( ) ( ) ( ) ( )A t P t P t A t I+ =−  (6C.53) 
 
has the solution P(t) = P ( ) 0t >  for each 1t I∈ . We consider the Lyapunov function  
 

( ) ( ) ( ) ( );V t Y t P t Y t=  
  
then  

( ) .V Y Y Y PY Y Y P t Y Y=− + ≤− +  
  
Using (6C.53) and the boundedness of P A, , we can  establish that || ( ) || || ( ) ||P t c A t≤ . 
Because 1 2Y Y V Y Yλ λ≤ ≤  for some 1 20 λ λ< < , it follows that  
 

1 1
2 1( ( )) ;V c A t Vλ λ− −≤− −  

i.e.,  
1 1

2 1( ( ))
( ) ( )

t
c A s ds

V t e Vτ
λ λ

τ
− −− −∫≤  

  
0t τ∀ ≥ ≥ . For the interval 1 1 2[ )I t t= , , we have 2 ( )sm t α≥  and, therefore,  

 
2

2 0
2 0( ) ( ) .

t

d
A d c f t c

τ
τ τ τ

α

⎛ ⎞⎟⎜ ⎟≤ Δ + + − +⎜ ⎟⎟⎜⎝ ⎠
∫  

 
 Therefore,  
 
 0 ( )

1 2( ) ( ) [ )tV t e V t t tλ τ τ τ− −≤ ∀ , ∈ ,  (6C.54) 
 
and t τ≥ , provided  
 

 
2

2 0
0 2 0 ,

d
c f λ

α

⎛ ⎞⎟⎜ ⎟+Δ + <⎜ ⎟⎟⎜⎝ ⎠
 (6C.55) 

 
where 

1
2

0 2

λλ
−

= . From (6C.54) we have  
 

0 ( )
1 2( ) ( ) ( ) ( ) ( ) ( ),tY t Y t Y t PY t e Y Yλ τλ λ τ τ− −≤ ≤  
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which implies that  
 

0 ( )2
1 2

1

( ) ( ) [ )tY t e Y t t tλ τλ
τ τ

λ
− −| |≤ | | ∀ , ∈ ,  

  
which, in turn, implies that the transition matrix ( )t τΦ ,  of (6C.52) satisfies  
 
 0 ( )

0 1 2( ) [ ),tt e t t tα ττ β τ− −Φ , ≤ ∀ , ∈ ,  (6C.56) 
 
where 02

10 0 2

λλ
λβ α= , = . Condition (6C.55) can be satisfied by choosing α  large 

enough and by requiring 2 0fΔ ,  to be smaller than some constant, i.e., 
1

22
0 2 4( )c f λ−

+Δ < , 
say. In the next step we use (6C.56) and continue our argument over the interval 1I  in 
order to establish boundedness by contradiction.  
 
Step 3. Boundedness using the B–G lemma and contradiction We apply Lemma 
A.5.10 to (6C.50) for 1 2[ )t t t∈ , . We have 
  

1

1 1

2( ) 2
1( ) ( ) ,t t

t t s t tx ce x t c m cδ ε− / −
, ,≤ | |+ +  

  
where 

1
|| ( ) ||t t,⋅  denotes the 2L δ  norm 

1 2|| ( ) ||t t δ,⋅  defined over the interval 1[ )t t, , for any 

1 00 2δ δ α< < < . Because 
s

x
m L∞∈  it follows that 

 
1

1 1

2( ) 2
1( ) ( ) .t t

t t s s t tx ce m t c m cδ ε− / −
, ,≤ + +  

  
Because 

1 1 1 1

2|| || || || || || || ( ) ||pt t pt t t t s t ty u c x c m cε, , , ,, ≤ + + , it follows that  
 

1

1 1 1

2( ) 2
1( ) ( ) .t t

pt t pt t s s t ty u ce m t c m cδ ε− / −
, , ,, ≤ + +  

  
Now 2 ( ) 1 ( )s dm t n t= +  and  
 

0 1

1 1
0 0

2 2( )
1 2 2

( ) ( ) .t t
d d pt t pt tn t e n t y uδ

δ δ

− −
, ,= + +  

  
Because 

1 0 12|| ( ) || || ( ) ||t t t tδ, ,⋅ ≤ ⋅  for 0δ δ≤ , it follows that 
  

0 1

1 1

2 2( )2 2
1 1( ) 1 ( ) 1 ( ) .t t

s d s pt t pt tm t n t e m t y u t tδ− −
, ,= + ≤ + + + ∀ ≥  

  
Substituting for the bound for 

1 1
|| || || ||pt t pt ty u, ,, , we obtain  

 
1

1

2( )2 2 2
1 1( ) ( ) ( ) 0t t

s s s t tm t ce m t c m c t tδ ε− −
,≤ + + ∀ ≥ ≥  

or  
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 1

1

( )2 2 ( ) 2 2 2
1( ) ( ) ( ) .

t
t t t

s s s s

t

m t c ce m t c e m m dδ δ τ ε τ τ− − − −≤ + + ∫  (6C.57) 

 
Applying B–G lemma 3 (Lemma A.6.3), 
 

2 2 2 2

1 1

1

( )2 2 ( )
1 1( ) (1 ( )) .

t t

s st s

t
c m d c m dt t t s

s s

t

m t c m t e e c e e ds t t
ε τ ε τδ δδ− − − −∫ ∫≤ + + ∀ ≥∫  

 
For t, s 1 2[ )t t∈ ,  we have  
 

2
2 2 2 0

2 0 ( ) .
t

s

s

d
c m d c f t s cε τ

α

⎛ ⎞⎟⎜ ⎟≤ Δ + + − +⎜ ⎟⎜ ⎟⎜⎝ ⎠∫  

  
By choosing α  large enough so that 

2
0

4

dc δ
α <  and by requiring  

 
2
2 0( ) ,

4
c f

δ
Δ + <  

  
we have 
  

2

2 1 2 2 12 2 2

1

( ) ( ) ( )2 2 2
2 1 1( ) (1 ( )) (1 ( )) .

t
t t t s t t

s s s

t

m t c m t e c e ds c m t e c
δ δ δ

δ− − − − − −≤ + + ≤ + +∫  

 
Since 2 1t t α− ≥ , 2

1( )sm t α= , and 2
2( )sm t α> , we have  

 
22

2( ) (1 ) .sm t c e c
δα

α α −< ≤ + +  
 
Therefore, we can choose α  large enough so that 2

2( )sm t α< , which contradicts the 
hypothesis that 2

2( )sm t α> . Therefore, sm L∞∈ , which implies that p px u y L∞, , ∈ .  
The condition for robust stability is, therefore,  

 
1

2 2
0 2( ) min

2 4
c f

λ δ
δ

−
∗

⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬+Δ < ,⎪ ⎪⎪ ⎪⎩ ⎭
 

 
 for some finite constant 0c > .  
 
Step 4. Establish bounds for the tracking error A bound for the tracking error 1e  is 
obtained by expressing 1e  in terms of signals that are guaranteed by the adaptive law to 
be of the order of the modeling error in the m.s.s. The tracking error equation has exactly 
the same form as in the ideal case and is given by  
 

1
2 2

1 0

( ) ( ) ( ) ( )
,

( ) ( )

n
m n

s

s s Q s s s
e m v

A s A s

α
ε

−
−

∗ ∗

Λ Λ
= +  
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where 0v  is the output of proper stable transfer functions whose inputs are elements of 

pθ  multiplied by bounded signals. Because 
2

2

2
0( )

s
p s m

m S fηθ ε, ∈ +  and 
2

2

2 2
2 0( )

sm
c dη ≤ Δ + , 

due to sm L∞∈ , it follows from Corollary A.5.8 that 2 2
1 2 0 0( )e S d f∈ Δ + +  and the proof 

is complete.      
 
 
6.9 Examples Using the Adaptive Control Toolbox 
 
The PPC and APPC algorithms presented in Chapter 6 can be implemented using a set of 
MATLAB functions and the Simulink block Adaptive Controller provided in the 
Adaptive Control Toolbox. For implementation of the APPC algorithms, these tools need 
to be used together with the PI functions or blocks introduced in Chapter 3. In this 
section, we demonstrate the use of the Adaptive Control Toolbox in various PPC and 
APPC problems via a number of simulation examples.     
 
6.9.1 PPC: Known Parameters 
 
The Adaptive Control Toolbox provides an easy way of designing and simulating a wide 
range of  PPC schemes. For the polynomial approach, the MATLAB function ppcpoly 
can be used to solve (6.31) for a given plant of the form (6.28) and design polynomials 

* ( )A s  and ( )sΛ . Denoting the coefficient vectors of ( ), ( ),Z s R s * ( ), ( ), ( )mA s s Q sΛ  as 
Z,R,As,Lambda,Qm, respectively, 
 
[Ku,Ky,RETYPE] = ppcpoly(Z,R,As,Lambda,Qm) 

 
returns the coefficient vectors of uK  and yK . RETYPE is returned as 0 if the equation 
solving process is successful and as –1 if it fails. 

Consider the SPM  
 
 Tz θ φ∗=  (6C.58) 
 
for the plant  
 

1 0
1

1 1 0

( )
,

( )

m
m

n n
n

b s b s bZ s
y u u

R s s a s a s a−
−

+ + +
= =

+ + + +
 

 
where 

 
[ ]0 1 0

1

,

,
( )

1 1
,

( ) ( ) ( ) ( )

T

m n

n

p

T
m n

p p p p

b b a a

s
z y

s

s s
u u y y

s s s s

θ

φ

∗
−

−

=

=
Λ

⎡ ⎤
⎢ ⎥= − −⎢ ⎥Λ Λ Λ Λ⎢ ⎥⎣ ⎦

 

 
and ( )p sΛ  is a monic Hurwitz design polynomial  of order n . This SPM is also used in 
parameterization for adaptive PPC, in section 6.9.2. 
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The MATLAB function uppcpoly or the Simulink block Adaptive 
Controller with appropriate options and parameters can be used to generate the 
signals φ  and z  of the SPM (6C.58), and the control signal u, as demonstrated in 
Examples 6.9.1 and 6.9.2 below.  

 
Example 6.9.1 Consider the plant 2

1sy u−= . We want to choose u  so that the closed-

loop poles are equal to the roots of ( )2
( ) 1A s s∗ = +  and y  tracks the reference signal 

1my = .  The reference input, my , satisfies ( ) 0m mQ s y =  for ( )mQ s s= . The control 
signal can be generated as 
 

( )( )
( )

( ) ( )
yu

m

K sK s
u u y y

s s
= + −

Λ Λ
,  ( ) 0.5s sΛ = + . 

 
( )uK s  and ( )yK s  can be calculated using the following code: 

 
Z = 2; 
R = [1 -1]; 
As = [1 2 1]; 
Lambda = [1 0.5]; 
Qm = [1 0]; 
[Ku, Ky, RETYPE] = ppcpoly(Z,R,As,Lambda,Qm) 
 
The result is  ( ) 0.5uK s = , ( ) 1.5 0.5yK s s=− − .       
 
Example 6.9.2 In Example 6.9.1, we have calculated  the control polynomials as 

( ) 0.5uK s =  and ( ) 1.5 0.5yK s s=− − . Now we can generate the linear model and control 
signals using the following code (added to the code of Example 6.9.1): 
  
Lambdap = Lambda; 
dt = 0.005;               % Time increment for simulation 
(sec). 
t = [0:dt:10];            % Process time (sec).  
lt = length(t); 
ym = ones(1,lt);          % Reference signal. 
% State initialization for plant: 
[nstate, xp0] = ufilt('init',Zp,Rp,0); 
xp(:,1) = xp0; 
% State initialization for linear parametric model: 
[nstate xl0] = uppcpoly('init',[1 0],Lambda,Lambdap,Qm); 
xl(:,1) = xl0; 
% Signal initialization: 
y(1) = 0; 
% Process  
for k = 1:lt, 
   u(k) = uppcpoly('control',xl(:,k),[y(k) ym(k)],[Ku 
Ky],...Lambda,Lambdap,Qm); 
   [z(k), phi(:,k)] = uppcpoly('output',xl(:,k),[u(k) 
y(k)],[1 0], ...Lambda,Lambdap,Qm); 
   dxl = uppcpoly('state',xl(:,k),[u(k) y(k) ym(k)],[1 0], 
...Lambda,Lambdap,Qm); 
   xl(:,k+1)=xl(:,k) + dt*dxl; 
   dxp = ufilt('state',xp(:,k),u(k),Zp,Rp); 
   xp(:,k+1)=xp(:,k) + dt*dxp; 
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   y(k+1) = ufilt('output',xp(:,k+1),Zp,Rp); 
end 
% Outputs: 
y = y(1:lt); 
 
The results are shown in Figures 6C.1 and 6C.2. Another way of simulating the above 
scheme is to use the Simulink block Adaptive Controller. We can use the 
Simulink scheme shown in Figure 6C.3, and choose the appropriate options and enter the 
appropriate parameters in the menus of the Adaptive Controller block.      

 

 
Figure 6C.1  Output and control signals of Example 6.9.2. 
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Figure 6C.2  SPM signals of Example 6.9.2. 
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Figure 6C.3  Simulink implementation of the PPC Scheme in Example 6.9.2. 
 

 
For the PPC scheme based on the state-feedback approach, where the state vector e  

of the state-space representation (6.52) for the plant (6.50), i.e., 
 

1( ) ( ) ( ), ,T
pe t Ae t Bu t e C e= + =  

 
is available for measurement, the MATLAB function ppcssv can be used to compute 
the state-feedback gain cK  of the PPC law 
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cu K e=−  
 
for a given design polynomial * ( )A s . Denoting the coefficient vectors of 

*( ), ( ), ( )Z s R s A s  by Z, R, As,  respectively, 
 
[Kc,RETYPE] = ppcssv(Z, R, As) 

 
returns the feedback gain cK .  RETYPE is returned as 0 if the equation solving process is 
successful and as –1 if it fails. 

If the state vector of (6.52) is not available for measurement, then the value of the 
Luenberger observer gain oK  in (6.55), which is required in estimation of the state vector 
e , can be computed using the MATLAB function stateest. Denoting the desired 
characteristic polynomial of T

c o cA K C−  by * ( )oA s , and the coefficient vector of * ( )oA s  by 
Aos, 
 
[Ko,RETYPE] = stateest(C, R, Aos) 

 
returns the observer gain oK .  RETYPE is returned as 0 if the equation solving process is 
successful and as –1 if it fails. 

The MATLAB function uppcrsf or the Simulink block Adaptive 
Controller with appropriate options and parameters can be used to generate the 
signals φ  and z  of the SPM (6C.58), and the control signal u, as demonstrated in 
Example 6.9.4.    
 
Example 6.9.3 Consider the plant  2

1sy u−= . We like to choose u  so that the closed-

loop poles are equal to the roots of 2( ) ( 1)A s s∗ = +  and y  tracks the reference signal 
1my = . This problem can be converted to a regulation problem by considering the 

tracking error equation 
 

1

2( 1)

( 1)m

s
e y y u

s s

+
= − =

−
,    

1

s
u u

s
=

+
, 

 
where we want 1e  to converge to 0. Assuming that the states of the canonical 
representation  
 

1 1 2

0 0 2
e e u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,     [ ]1 0 eε=  

 
are available for measurement, we can design a state-variable controller 
   

1
, .

s
u u u Ke

s

+
= =  

 
The value of K  can be calculated as follows: 
 
R = [1 -1 0]; 
Z = [2 2]; 
As = [1 2 1]; 
[K, RETYPE] = ppcssv(Z, R, As) 
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The result is [ 1 0.5]K = − − . 

If the state vector e is not available for measurement, we use a state estimator. Let us 
design a state estimator with gain vector L so that [ ]1 1

0 0
1 0L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−  has the characteristic 

polynomial * 2( 2)oA s= + . The following code can be used for this purpose: 
 
R = [1 -1 0]; 
C = [1 0]; 
Aos = [1 4 4]; 
[L, RETYPE] = stateest(C, R, Aos) 
 
The calculated observer gain is [ ]5 4

T
L = .    

 
Example 6.9.4 In Example 6.9.3, we have calculated the feedback gain as  

[ ]1 0.5K = − − . Now we can generate the linear model and control signals using the 
following code: 
 
Qm = [1 0]; 
Z = 2; 
R = [1 -1]; 
Q1 = [1 1]; 
As = [1 2 1]; 
ba = [Z R(2)]; 
[num den] = uppcrsf('augment',[1 0],Q1,Qm,ba); 
[K, RETYPE] = ppcssv(num,den,As) 
 
Lambdap = Q1; 
Aos = [1 4 4]; 
 
dt = 0.005;               % Time increment for simulation (sec). 
t = [0:dt:10];            % Process time (sec).  
lt = length(t); 
ym = ones(1,lt);          % Reference signal. 
% State initialization for plant: 
[nstate, xp0] = ufilt('init',Z,R,0); 
xp(:,1) = xp0; 
% State initialization for state space and linear parametric model: 
[nstate xl0] = uppcrsf('init',[1 0],Aos,Q1,Qm,Lambdap); 
xl(:,1) = xl0; 
% Signal initialization: 
y(1) = 0; 
% Process 
for k = 1:lt, 
   [u(k) ubar(k)] = 
uppcrsf('control',xl(:,k),K,Q1,Qm,Lambdap); 
   [z(k), phi(:,k)] = uppcrsf('output',xl(:,k),[u(k) 
y(k)],[1 0],…Aos,Q1,Qm,Lambdap); 
   dxl = uppcrsf('state',xl(:,k),[u(k) ubar(k) y(k) 
ym(k)],[1 0],…  
                       Aos,Q1,Qm,Lambdap, ba); 
   xl(:,k+1)=xl(:,k) + dt*dxl; 
   dxp = ufilt('state',xp(:,k),u(k),Z,R); 
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   xp(:,k+1)=xp(:,k) + dt*dxp; 
   y(k+1) = ufilt('output',xp(:,k+1),Z,R); 
end 
% Outputs: 
y = y(1:lt); 
 
The results are plotted in Figures 6C.4 and 6C.5. Another way of simulating the above 
schemes is to use the Simulink block Adaptive Controller. One can use a scheme 
similar to the one shown in Figure 6C.3, and choose the appropriate options and enter the 
appropriate parameters in the menus of the Adaptive Controller Simulink  
block.       

 
Figure 6C.4  Output and control signals of Example 6.9.4. 
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Figure 6C.5  Linear parametric model signals of Example 6.9.4. 

   
 

For the linear quadratic (LQ) control, the MATLAB function ppcclq can be used 
to compute the state-feedback gain K for the plant (6.50) with the state-space 
representation (6.71) and a given penalty coefficient λ . Denoting λ  and the coefficient 
vectors of ( ), ( )Z s R s  by lambda and Z, R, respectively, 
 
[K,RETYPE] = ppcclq(Z, R, lambda) 

 
solves the Riccati equation (6.73) and returns the feedback gain K.  RETYPE is returned 
as 0 if the equation solving process is successful and as –1 if it fails. 

The MATLAB function uppcrsf or the Simulink block Adaptive 
Controller with appropriate options and parameters can be used to generate the 
signals φ  and z  of the SPM (6C.58), and the control signal u, as in the case of PPC, 
using a state-feedback approach. 
 
Example 6.9.5 Consider the plant 2

1sy u−=  of Example 6.9.3. We want to choose u  so 
that the closed-loop plant is stable and y  tracks the reference signal 1my = . As before, 
this problem can be converted to a regulation problem by considering the tracking error 
equation 
 

1

2( 1)

( 1)m

s
e y y u

s s

+
= − =

−
,    

1

s
u u

s
=

+
, 

 
where we want 1e  to converge to 0. Assuming that the states of the canonical 
representation (or the states successfully estimated; see Example 6.9.3) 
 

1 1 2

0 0 2
e e u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,     [ ]1 0 eε= , 
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are available for measurement, we can design the LQ controller 
 

1
, ,

s
u u u Ke

s

+
= =  

which minimizes the cost function  2 2

0
( 0.2 )J e u dt

∞
= +∫ . The corresponding feedback 

gain K  can be calculated as follows: 
 
R = [1 -1 0]; 
Z = [2 2]; 
[K, RETYPE] = ppcclq(Z, R, 0.2) 
 
The result is [ 2.7361 0.5]K = − − . If we apply this gain in Example 6.9.4 instead of 
[ 1 0.5]− − , we obtain the results shown in Figures 6C.6 and 6C.7.      
 

 
Figure 6C.6  Output and control signals of Example 6.9.5. 
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Figure 6C.7  Linear parametric model signals of Example 6.9.5. 
 
 
6.9.2 APPC 
 
An APPC scheme, in general, is composed of a PPC law that can be obtained using one 
of the three approaches mentioned in section 6.9.1 and a PI algorithm to estimate the 
unknown plant parameters, which can be chosen from a wide class of algorithms 
presented in Chapter 3. 

The Adaptive Control Toolbox functions ppcpoly, ppcssv, ppcclq  can be 
used to generate the control signals, as demonstrated in section 6.9.1, with unknown plant 
parameters. The functions uppcpoly and uppcrsf or the Simulink block Adaptive 
Controller with appropriate options and parameters incorporated with parameter 
identification functions (or the Parameter Estimator block) can be used to 
generate the signals φ  and z  of the linear model (6C.58), and the control signal u. 
 
Example 6.9.6 Consider the plant of Example 6.9.2.  Assume that the plant parameters 
are unknown. We want to apply the same control algorithm. We can use the linear model 

*Tz θ φ= , where  
 

[ ]

2

2

*

2 2 2 2

,
( 1)

2 2 1 0 ,

1
,

( 1) ( 1) ( 1) ( 1)

T

p

T

s
z y

s

s s s
u u y y

s s s s

θ

φ

=
+

= −

⎡ ⎤
⎢ ⎥= − −⎢ ⎥+ + + +⎣ ⎦

 

 
to estimate the unknown plant parameters. The Simulink blocks Parameter 
Estimator and Adaptive Controller can be used for simulation. Selecting the 
PI algorithm to be LS with forgetting factor 1β =  and 0 10 IP = , and initializing θ  
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as [1 1 1 1]T , the results plotted in Figures 6C.8 and 6C.9 demonstrate that both the 
estimation and tracking objectives are successful.    
 
 

 
Figure 6C.8  Output and control signals of Example 6.9.6. 

 

 
Figure 6C.9  SPM parameter estimate 1 0

ˆ ˆ[ ]Tb aθ =  of Example 6.9.6. 
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