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Chapter 7

Complementary Material

7.2.3 Direct MRAC

Proof of Theorem 7.2.2. We prove Theorem 7.2.2 in three steps.

Step 1. Show that O(k) and e(k) are bounded Let us first rewrite the update equations

in (7.32) as
O(k+1) = (k) +ye(k)p, (k) +( (k),
where 0(k) £ 0(k)—0",

0,, if (0, (k) + ey, (0))sen(cy) > 6,
(k)= ’
‘ [0;71 > 6osgn (Cr) ) - 6‘2n (k)— '7’5(]())7[, (k)] otherwise,

and 0, denotes the zero vector of dimension i . Consider the function
Vk)= 0" (k)d(k).
Using (7C.1), (7C.2) we get

Vk+1)—=V(k) =~ (k)g] (), (k) +272(k)0" (k) (k)
420" (k4+1)¢ (k) — ¢ (k).

From (7C.1) we have
0" (k+1)¢ (k) = 0,,, (k+1)C,, (k) <O0.

Substituting (7C.4) into (7C.3), we obtain

Vk+1)—V(k) <y’ ()] (), (k) + 270" (k)g, (k) — C (k).

Using (7.30) and (7.32), we have
e(kym (k)= —0" (k) (k).

Substituting (7C.6) into (7C.5), we get

(7C.1)

(7C.2)

(7C.3)

(7C.4)

(7C.5)

(7C.6)
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72 (gr (k)¢p (k))2 ¢Z (k)¢p(k) 5 (éT (k)¢p(k)>2 2

V(k+1)—V(k) < s e 2 (k)
o . : (7C.7)
—2)(67 (k k
Sv(v )(2 (K)o, (k) <o
m? (k)

since 0 <y < 2. From (7C.7) we see that 0(k) € ¢ . and hence 0(k) € ¢ by definition.
Furthermore, using (7C.6), we establish that (k) € ¢ __.

Step 2. Define a fictitious normalizing signal m , bounding u,,y, and establish an

upper bound for m, From (7.30) and (7.31), we have

v, =W,(2)

r—i—i*érw]. (7C.8)

C()

Since y, =G, (z)u, and Z (z) is Hurwitz, we can rewrite (7C.8) as

r—i—i*érw

C()

u, = G;l (2)W, (z) , (7C.9)

where G;l(z)Wm (z) is biproper because of assumption M2 (stated in section 7.2.2). Let

us define a fictitious normalizing signal m, as
2,7 A ’ 2
m) (k) 2 1, k=D + |y, k=1, (7C.10)
where ||-|| denotes the ¢,, norm for some 0<¢é <1 for which G;l(\/gz),Wm(\/gz)
have stable poles. Applying Lemma A.12.33 to (7C.8), (7C.9), together with the fact that

refl, weget

||”p|| Sct C"éTw"’ ||y,|| <c+ C||9Tw||, (7C.11)

where ¢ denotes any finite constant. Substituting (7C.11) into (7C.10), we obtain
m, (k) < c+c||§r(kf l)w(k—l)". (7C.12)

Step 3. Establish boundedness of all the signals and convergence of e, (k) to zero

Defining w, £[&", W, '(2)y,]", we have
0Tw=0"w,+&(r-w,'@y,). (7C.13)

Rewriting (7C.8) as
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1 -
r= Wm"(z)yp ——0"w

C()

and substituting into (7C.13), we get

_ _ P
0w = HTwp -9,

Co
1e.,
0rw="20"0 . (7C.14)
c
0
From Lemma A.12.35, we have
W, @07, ] =076, + W)W, )] ]|Ad]. (7C.15)

where W, (z),W.(z) are as defined in Lemma A.12.35 and, for any variable x,
Ax(k) £ x(k+1)— x(k) . From Lemma A.12.35, we have

0"w, =F, [(Aé)T w, +0"Aw, +(A8) Aw[,} +F[0w,), (7C.16)

l—F(z,nO)
z—1

where F(Z’O‘o) = ﬂo—”“ F1 (Z’O‘o) = SatiSfy ” F1 (z, ao) ”ocr?g aLﬂ ’

(z=14ay)

| F(z.ag )W, ' (2) ||, < call forany 1< a,.
Using (7C.15) and (7C.16), we obtain

9~Twp =F [A@NTwp +§TAwp JrAéTAwp]JrFW,;l

076, +W.@)|W,@|w; |a0]|. (7€.17)
Using (7C.14), we have
A0"w, +0"Aw, + A0 Aw, = i*(Aco <0~T +A9~T)(w+Aw)+COA§T (W+Aw)+co0~TAw).

Co

(7C.18)
Using (7.32) and (7C.18), we can rewrite (7C.17) as
éTwp = i*FI [ACO (0~T +AQ" )(w + Aw) + coAgr (w + Aw) + coéTAw]
% (7C.19)
+FW' [fsmf + VVC(Z)[Wb(Z)[w:]Ag”.

Due to boundedness of i , it follows from (7C.14) that

||5Tw|| < c||§Twp || (7C.20)
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Applying Lemma A.12.33 in (7C.19) and using the fact that || F; (z,q, ) [|.,< =, we can
establish that

ol <l < lfseom L+ |8, L m ) o (o Jom .+ e
0
Therefore, due to Ac,,Ad € __,
674 < aiomf +cay ||gm, |, (7€C.22)
where g = |em,| +|A§| €l, and §— 0 as k— oo . From (7C.12), (7C.22) we obtain
m’(k)<c +§m_§ (k—1)+cal” ||g(k —Dm, (k— 1)||2 :
0

which for large o, implies that

e 2
m’ (k) < ¢ +ca" gk —Dm, (k- 1)||

or

L k=1 )
my (k) <c+cag" > 6 g (ym] ().

i=0

Since 67 <1 for i=0,1,...,k—1, we have
kel
m3 (k) < c+cag" > g (Hm7(0).
i—0

Applying Lemma A.12.31(ii), we obtain

m(ky<c[] (1 +eal” gz(i)).

0<i<k

Using the fact that the geometric mean is less than the arithmetic mean, we have

mi (k) <c
i=0

1 k—1 . ) k
1+;an§" gz(l)] )

Since g € ¢,, we have
c k
mfz-(k)SC[lJr;] <ce,

which implies that m, € £ and hence, using the definition of m, and Lemma A.12.33,

that all the signals within the closed-loop system are bounded. From (7C.8) we have
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e =y,—y,= in(z)[éTw]. (7C.23)

s

C()

Using (7C.22), we can establish due to m, € £ and g€ {,, g(k) — 0 as k — oo that

k—00

lim sup [0 (k)w(k)| < <.
a()

Since ¢, is any arbitrary large number, the above inequality implies that
lim sup ||éT (k)w(k)” =0.
k—00

and hence, using (7C.23), we have that ¢,(k) -0 as k —oo. [

Proof of Theorem 7.2.3. We prove Theorem 7.2.3 in a similar way to Theorem 7.2.2.
The boundedness of 6(k) and £(k) follows from Theorem 4.11.3. Next, to bound u,,y,,

we define a fictitious normalizing signal
w2 (k) 2 14 e, =D+ [y, k=D

where ||-|| denotes the ¢,, norm for some 0<§<1 for which G;l(\/gz), W, (/62)

have stable poles. To find an upper bound for m, , we express the plant input and output

in terms of the error parameter term 6’ w . Consider the SPM (7.30), which is valid for
1n=0.For =0, we rewrite (7.33) as

y,—n=6G,2u,. (7C.24)

The effect of 7 can be included in (7.30) as follows:

2 =07 (8,()—,,(k)), (7C.25)
where
sle W@ (@2 '
¢pn - On—l’ A(Z) 7 Wm (Z)n7 n

Using (7C.25) and (7.38), we have
etm; (k) =—0" ()¢, (k) — 67, (k). (7C.26)

From (7C.25) and (7.37) we have

r—+

1 -~
—0"w
Co

y,=W,(2) + 1y, (7C.27)
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where 7, £ %0”@1)1"1 =1+W, (Z)M)n. Since Z,(z) is Hurwitz, using (7C.24)

cax\(z)

we have

r—l—i*éTw

Co

u, =G, ()W, (2) +n,, (7C.28)

where 17, éG;l(z)[n)_ —n]. Applying Lemma A.12.33 to (7C.27), (7C.28) and using
stability of W, (2),G," ()W, (z) , we obtain

e, < c el + Il |3, | < c+el8me]+|m] (7C.29)

Using the expressions for 7, and 7, , we have

0, A (z)+6," a(z)
| % AM2) T8, alz)
| <+ @== Ml
n.) <G, @)W, (2) cAQ) » "77"

where
Il < mlld @, |+ 12, @ 5, )+ .

which implies that

||”y|| SA pmp+dy, |0, | <A pm, +d, (7C.30)
where
0,A(2)+ 0, a(z) _ 0.\ (2)+0." a(z)
A2 max{ 1+ W, ()= c;—A( ZZ) 3 G, @W,, (2)= c;A—( ZZ) xé]max {"AI(Z)”M ’"Az(z)”m}'

From (7C.29) and (7C.30), we obtain
m? <c+e|f” k- l)w(kfl)"z AL,
which can be rewritten for p <1/A_ as
~ 2
m? §c+c||9T(k—l)w(k—1)" , (7C.31)

noting that ¢ denotes a generic positive constant. Similarly to the proof of Theorem
7.2.2, defining w, = [a_JT,W,;l(z)yp]T and rewriting (7C.27) as

_ 1 - _
r=W, '@y, ——=0"w-W, @,

Co
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we obtain

0rw="20"0w 0 W, (2, (7C.32)
Co Co '

Applying the same arguments based on Lemma A.12.35 in the proof of Theorem 7.2.2 to
W, (2)[0"w,] , we have

érwl, =F [Aérw/) +0~TAwp —|—A0~TAwp]—|—FW,;1

076, +W.@)|W, 0] |20,
(7C.33)

where W,(z),W,.(z) are as defined in Lemma A.12.35, Ax(k) £ x(k+1)—x(k) for any

variable x, and F(z,0,)=—2 »,E(z,ao):lfi(f%) satisfy || F (z.oy) [l s <=

P
(z=1+aq)" ! g

| F(z,0 )W, (2) ]| s < ca! forany o, > 1. Using (7C.32), we have

A0"w, +0"Aw, + A Aw, = %(ACO <§T + AéT)(w +Aw)+¢,A0" (w+ Aw)+ coéTAw)
0

+ AcoﬁV + coAﬁy + AcoAﬁy,
(7C.34)

where 7, 2w (z)n, . Using (7.37)—(7.39) and (7C.34), we can rewrite (7C.33) as

érwp = L,KF1 [ACO (9~T +A0" )(w +Aw)+ c, A" (w+Aw)+ coéTAw]
% (7C.35)

+F [ AT, + AT, + Acy AT, |+ FW,! [_gmf +W,@)|W, @[] ] AéH.
Due to boundedness of é , it follows from (7C.32) that
|7 < e w, |+ <[] (7C.36)

Applying Lemma A.12.33 in (7C.35) and using the fact that |Fj(z,q,)|_, <- and the

o0d T 0

boundedness of 6(k), we can establish that

e <07, |+l < 2 (Jacum, |+ |a07m, | +-m )+ caf

e |+ 87 )+

ﬁv :
(7C.37)

Therefore, using Ac,,Ad € ¢__ together with the definition of 7, and (7C.30), we obtain

||9~Tw|| <c m, —I—Coé(r)f "gmf ||-|-ch, (7C.38)

1
)
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where from Theorem 4.11.3 and (7.40) we have g é|5mx|—|—|A9~| €S<,u2 +d§). From
(7C.31) and (7C.38), we obtain

m(k)<c+e m? (k—1)+cal" ||g(k —Dm, (k— 1)||2 ,

1
— -+
@
which for large «, implies that

(k) < e+ cad gtk —Dm, (kD[ +epm? k1)

or
k—1

m’ (k) < c+cad” > 8 g (ym? (i) +cp’m? (kD).

i=0

Defining  §,(i)=(g°()+p*)"? Vi and noting that g, € S(u>+d?) since g€

S(u’ +d; ), we can rewrite this inequality as

L k=1 )
my (k) <c+cag" > 6 g (m; ().

i=0

Applying Lemma A.12.31, we obtain

mj (k) < c+§

i=0

ca 82 [] (1 +eal 878 j))].

i<j<k

Using the fact that the geometric mean is less than arithmetic mean, we have

k—i—1
k-1 i 1 k-1 i
m_i(k)gc—i—z caé &* g%(l) 1—|—k - 1[2 cozg & "85(})]] .
i=0 -t

j=it1

Since g, € S(u”* +d,) and |6| <1, we have

k—

< Z(Caén»gg(i)ékq(l_"_uz _"_dg)k—if]).

i=

k—1 k—i—1
m k) <c+> |cal 6k'g§(i)[1+u2 +d+ kil]

i=0

Therefore, again since g, € S(u° +d;), for §<1/(1+p’>+d;) we conclude that
m, € {_ and hence, using the definition of m, and Lemma A.12.33, that all the signals
within the closed-loop system are bounded. From (7C.27) we have

1 ~
&=y, =Y, = =W, @07 w|+n, (7C.39)

Co
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In a way similar to the proof of Theorem 7.2.2, using (7C.30), (7C.38), (7C.39) together
with m, € 0, g € S(u* +dj ), and Lemma A.12.33, we establish the convergence result

of the theorem, i.e.,

N-1

lim sup iZ_|e,(k)|§c(,u—i- & +d0),

N—ococn<h N 1)

where €, = 1/a, , which can be taken as an arbitrarily small positive number. [

7.2.4 Indirect MRAC

Proofs of Theorems 7.2.4 and 7.2.5. We prove Theorems 7.2.4 and 7.2.5 following the
same methodology as in Theorems 7.2.2 and 7.2.4. We mainly consider Theorem 7.2.5,
and treat Theorem 7.2.4 as a special case of Theorem 7.2.5, where =0 and d, =0.

Because of Theorem 4.11.3 and (7.46), we have that Op,l/lgp,a, em €l and Af,
em, € S(u’ +d;) (Af,,em €, for the ideal case with =0 and d, =0). This also

implies that 0 € ¢ and AG € S(i° +d;) (A€, for the ideal case with =0 and
d,=0).
Next, to bound u,,y,, we define a fictitious normalizing signal

2 (k) 2 1, k=D + [y, =D

where |||| denotes the £,; norm for some 0 <6 <1 for which G;l(x/gz), w, (\/52) have

stable poles. To find an upper bound for m,, we express the plant input and output in

7
terms of the error parameter term 0w . Rewriting (7.33) as

y,—n=G,2u, (7C.40)

the effect of 7 can be included in the SPM (7.43) as follows:

(k) =07 (¢(k)+, (k) + 1. (k). (7C.41)
where
A 0T O‘:q(z) ' o z"
¢17 - Om+1’ AP(Z) n ’rlz - Ap (Z) n.

Note here that, as established in the proof of Theorem 7.2.3,

o< wlla @l o, [ +12.@0L o, )+ o



Page 7C.10 Chapter 7. Complementary Material

and hence
A R G RN M em
Using (7C.41) and (7.45), we have
e(kym’ (k) = —5; (k)p(k) + 0;%7/ (k)+mn, (k). (7C.42)

Noting that 6", are the same as in the direct MRAC case, from (7C.27) and (7C.28) we
have

1 -~
r+—0"w
Co

Y, =W, ()

+1,, (7C.43)

u, =G, (@)W, (2)|r+ clg 0"w|+mn,, (7C.44)
where 7,7, are as defined in the proof of Theorem 7.2.3 and hence satisfy
blscrdpustul Blscsdidebl  oce
[ < Acpm, +dy ) < A pum, +d. (7C.46)
where
AL max{ 1w, () 2R L0 0@ A(ZC);X g“(z) 3
6, o B s ool )

From (7C.29) and (7C.30), we obtain
m; <c+ c"éT (k—Dw(k — 1)"2 + A;uzm; ,
which can be rewritten for p <1/A_ as
2 5T 2
m’ <c+ c||0 (k —Dw(k — 1)|| , (7C.47)

noting that ¢ denotes a generic positive constant.

Next, following the steps in the proof of Theorem 5.6.1 (for continuous-time indirect
MRAC), with the only difference that the differential operator s and the continuous-
time variable ¢ are respectively replaced with the shift operator z and the discrete-time
index k, we obtain

0'W, ()3, =, (7C.48)



Page 7C.11 Chapter 7. Complementary Material

where

_ T
@, é[wlT,sz,y,,,WmI(Z)y,,] ,

—a 1[A P W.(@2)  ~ 5 W,.(2)
52 [Q(Z,k) R (2 0y, ~ 0k Z, (k)= B, |
and e, satisfies
@] < cem,m, |+ c||adm,|, (7C.49)
where ¢ denotes a generic positive constant.
From (7C.43), we have
1 57
e=y,—y,=W,|=0 w/+n,. (7C.50)
Co
Therefore,
0w, —0"w=0" (&, —w)= (co —c;)(Wm’lyp _p=5"% éTuH-(co —c;)ﬁv,
IoN ’

where 7, £ W, '(z), ; ie., 0", :Z—féTw+(co —cg)ﬁy. Hence, using Lemma A.12.36,

we obtain

0"w= z—;[lﬂ (Z,ao)[AQT(EI +0"AT, 4+ A0TAG, ] + F(Z,ao)[éTﬁl] — (CO — c;)ﬁy],
0

(7C.51)

where  Ax(k) £ x(k+1)—x(k) for any variable x and F(z,0,) = o’

(z—l+uo)" ’

Fza) =" satisty || F(zay)ll <<, IF@a)W, @ | <cai for any

—_ b
Qo

o, >1. Applying Lemma A.12.35, we obtain
0w =w" {éTWm @]+ w.[w, [w{]MH —w' [a AL [a{]A&H, (7C.52)

where W,(z),W_(z) are as defined in Lemma A.12.35. Substituting into (7C.51), we
obtain

¥

*
i
CO

Fi(2,0,)[ 070, +07AG, + A0TAD, |+ F(z,0,)W," (z){a + m(z)[Wb(z)[wf]M” —(ey—€})7 ]

Since ¢, is bounded from below, i.e., using Lemma A.12.33 and the definition of m,,

we obtain

674 < aLO"Aémf" el (I [+ | adm, )+ <[, (7C.53)
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Using (7C.49) and  (7C.53)  together  with 9,917,1/ lgl,,s,sms el .,
A0, AO, em €S’ +dy)  (AOA0,em €l, for p=0 and d,=0), the
definition of 77, , and (7C.46), we obtain

[pe] <

1 .
—+pim, +cag "gmf"—i—cdo, (7C.54)
ay : :
where gé|ems|+|A9|+|A0p|€8(uz+d§) (gel, and g—0 as k—oo for pu=0
and d, =0).

Note here that (7C.31) and (7C.38) are exactly the same as (7C.47) and (7C.54),

respectively. Hence using these equations and exactly the same steps as in the proof of
Theorem 7.2.3, we establish that m S ¢, and hence all the signals within the closed-

loop system are bounded as well as

N-1

lim sup i2_:|el(k)|§c(,u—i— £ +d0),

N—oo 0<N<N k=0

where ¢, = 1/a, , which can be taken as an arbitrarily small positive number.

In the ideal case, where ©=0 and d, =0, using (7C.54), m, el _, gel,,

8(k) — 0 as k — oo, and choosing «, arbitrarily large, we have that

lim sup [|0” (k)w(k)” =0.
k—o00

This, together with (7C.50), implies that ¢,(k) — 0 as k —oco. [

7.4 APPC

Proof of Theorem 7.4.1. The steps of the proof are similar to those of the proof of
Theorem 6.7.3 (continuous-time robust APPC).

Step 1. Express u,,y, in terms of the estimation error We rewrite the control law

(7.85) and the normalized estimation error as

| A1
LQ, N *PK(Y,, —Yu)s
1 | (7C.55)
2 T D 5
em, =z2—0 ¢=R —y —Z —u,.
p pAp p pAp p

The proof is simplified if without loss of generality we design

A@)= A, (@A, (),

where A (z) is an arbitrary monic Hurwitz polynomial of degree ¢—1 if ¢>2 and

A, (z)=1 for g <2. We should point out that the same analysis can also be carried out
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with A;A, being Hurwitz but otherwise arbitrary, at the expense of some additional

algebra. Let us define

A 1 A 1
u, 7Xup’ Yy 7Xy11
and write (7C.55) as
f’y. +iQmu =Y.
o S (7C.56)
RPA Ay —ZpAquf =em],
where

Using the expressions

R@A,@)=2"""40"a, (2. Z,@\@D=0a,, @),
P@)=pz" " +7 a,., (2 L@0,@)=s"""+1"a,., ,2)

in (7C.56), we obtain

yk+n+qg—D)==0a, @y k) +0, 0, ,(@2u (k)+em’(k),

u(k+n+q-=1=pf =0 a,., @y, &)= (b, +1) a,., ,@u, k) (7C.57)
— poem; (k) +,, (k).

Defining the state

T

(7C.57) can be expressed in the form

x(k+1) = A(k)x(k)+ b, (k)efms2 (k)+b,y,, (k), (7C.58)
where
-0 0; 1

I 0 0 0 O(n+q—1)
A(k) _ n+q—2_ (n+q-2) (n+q_—2)x(ri—q—l) ) bl (k) _ (n+q-2) i b2 -1
pO/=p" p0,—1" —P, 0

(n+q-2)

O(n+q72)x(n+qfl) In+q72 0(n+q72) O(Yl+ti*2) !

and O, 5 i, and 0 denote, respectively, an (n+g—2)x(n+g—1) matrix

(n+q-2)
and an (n+ g —2)-vector with all elements equal to zero. Since
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u,(k)y=~Au,(k)y=u,(k+n+qg—1+ )\Tan+q_2(z)uf.(k),
y,()= Ay, (k)= y,(k+n+g—D)+Na, @)y k),

where \ is the coefficient vector of A(z)—z"™", it follows that

u,(k)=10,...,0,1,0,...,01x(k + 1) +[0....,0,\" Jx(k),
NIMIAICAL IR NIMEAY

n+q—1 n+q—1 n+q—1

(7C.59)
¥, () =[10....,0,0,...,01x(k + 1) +[A",0....,0]x(k).

—
n+q—1 n+q—1 n+q—1

Combining (7C.58) and (7C.59), we obtain

x(k+1) = A(k)x(k) + b, (k)em] (k) + b, y,,, (k),
Y, (k)= CIT (k)x(k)+d, (k)ams2 (k) +d,y,, (k), (7C.60)
u, (k) = C (k)x(k) + d, (kyem? (k) + d,y,,, (k),

where

Cl.d,.d,|=110,...,0,0,....0][A b, b,]+[\",0,...,0],

n+q-1 n+q-1 n+q+1
[C;,d3,d4]:[O,...70,1,O,...,0][A b, b,]+0,...,0,A",0,0].
n+q—1 n+q—1 n+q—1

Step 2. Establish the e.s. property of A(k) Using Theorem 4.11.3, we have that
0,.e.em €l and A0,,em, ES(MZ —|—d§> (Af,,em €, for the ideal case with
p=0 and d,=0). Consequently, we have |[[A]l€f  and [AA|eS(*+d;)
(| AA || € ¢, for the ideal case with ;1 =0 and d, =0).

The APPC law guarantees that det(zl — A(k)) = A*(z) for each k, where A"(z) is

Hurwitz. Hence, because of Theorem A.12.23(i), the homogenous part of (7C.60) is e.s.
in the large.

Step 3. Use the properties of /, norm and the B—G lemma to establish boundedness

We apply Lemma A.12.33 to (7C.60). Using the e.s. property established in Step 2 and
Lemma A.12.32, we have

]| < /8" [ x(0)] +elem) |+
where ||(~)k|| denotes the ¢,, norm "(')k"n for any 6>a’, where a€(0,1) is the

exponential convergence rate (as used in Definition A.12.15) of the homogenous part of
(7C.60). Since =< £, it follows that

bl <8 m 0 cfiem -+

Since ||y, b, [I<cllx, [[4+¢ | em?), | +c, it follows that
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[l < il < 8", 00+ em | +-c. (7C.61)

From (7.86) , we have m (k) =1+ ¢" (k)p(k) +n, (k) and

2

2
n (k) =8,'n,(0)+| yp(k71)||2§0 oty | (7C.62)

26,

Since [| (), lhs, <Oy || for 8, <6, it follows that

m2 (k) =1+ 6" (oK) + 1, (k) <1+ 6" ©0pk) + 8, m O+ |y, [ + || £ k>0,

Substituting (7C.61) and noting that (7C.62) and Lemma A.12.33 imply
" (k)p(k) < cn, (k) , we obtain

m2(k) < ¢ +e8'm2(0)+c|em?), ||2 Vk >0

or

k—1
m> (k) < c+c6m>0)+c)y (67 m (ym (i) Vk>0.
i=0
Applying Lemma A.12.31, we obtain

m (k) < c+cs* m?(0)+ ci[ [T (1+87mi () 'e*m? ()(1+6“m,? (0))]

i=0 \i<j<k

=c+cs'm(0)

Em @) [T (146 7e*ml( j))]]

i<j<k

k—1
IESY
i=0

—l—ci[ék"azm? @) H (1 + 5kj52mf(j)>] Yk > 0.

i=0 i<j<k

Using the fact that geometric mean is less than arithmetic mean, we have

k—1
14> | eml (i)

i=0

mf(k) <c+ c&kmf(())

1+
k

k—i—1
> 5“62m3<j)] ]]

—1—= i<j<k
k—1

+cz

i=0

Vk > 0.

k—i—1
1+ ! 25k152m§(]’)]

8P ml (i) ,
k—i—1 i<j<k

Since g, € S(u* +d;) and |6| <1, for § <1/(14 u* +d;), we have
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k—1
1+

k—i—1
2m2 ()| 1+ —E J
i=0 X() k—i—1

1 k—i—1

i=0

m? (k) <c+cd*m(0)

<c+ cékmsz(O)[l + e”i(ssz (i))] + ce”i(ék’iasz (i))
i=0 i=0

Sc—l—cé"mSz(O)(l—i—k(Hz +d§>)+c
<c Vk > 0.

Therefore we have m_, and hence all the closed loop signals bounded.

Step 4. Establish bounds for the tracking error A bound for the tracking error e, is
obtained by expressing e, in terms of signals that are guaranteed by the adaptive law to

be of the order of the modeling error in the m.s.s. The tracking error equation is derived
following the steps of the proofs of Theorems 6.3.2 and 6.7.2, replacing the differential
operator s with the shift operator z and applying the discrete time counterparts of the B-
G and swapping lemmas used; it has the same form as in these proofs and is given by

_ Az)z""'Q,, (2) em? 4+ A@2)a,_,(2)
A (2) : A*(z)

1 0°

where v, is the output of proper stable transfer functions whose inputs are elements of
Af,  multiplied by bounded signals. Since 0,,c,em ,m €l and

AO,.em, € S(i* +d;) (A6,,em €L, for the ideal case with =0 and d, =0),

following exactly the same steps as in the proof of Theorem 7.2.3 (and Theorem 7.2.2),
we establish the convergence results. [

7.5 Examples Using the Adaptive Control Toolbox

The discrete-time MRAC, adaptive prediction, one-step-ahead control, and APPC
algorithms presented in Chapter 7 can be implemented using a set of MATLAB functions
and Simulink blocks provided in the Adaptive Control Toolbox. In this section, we
demonstrate use of the Adaptive Control Toolbox in various discrete-time adaptive
control problems via some simulation examples.

7.5.1 MRAC

The MATLAB function dmrc can be used to simulate the MRC algorithm described in
section 7.2, as demonstrated in Examples 7.5.1 and 7.5.2.

Example 7.5.1 Consider the plant

y(#)—1.9y(t —1)+0.9y(t — 2) = u(t — 3) + 0.5u(t — 4) + 0.25u(t — 3),

where the signal y is initially at rest, i.e., y(0) = y(—1)=---=0. Let us design a model
reference controller to bring y to 1, i.e.,, y, (1)=1Vt. We can do this by choosing a
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stable reference model with a steady-state value of 1 and applying the desired reference
to this reference model. Let the reference model be

E(g")y,()=q"H(q")r(r),

where
E(q')=1-15¢"+0.564",

H(q™)=004+002q".

Solving the matching equation
Flg')A(g")+q7°G(q")=E@™),
we obtain
F(q-‘ ) =1+04q"'4+042¢72,

G(q')=0438-0.378¢",
Bq")=F(q")B(g")=1+0.9¢" +0.87¢ +0.31g +0.1054 ",

Hence the control law is given by

u(t)_ﬁioﬁ(q')r(t)é(ql)y(t)qa(q')u(m)

=0.047(f) +0.02r(t — 1) — 0.438 (1) + 0.378y(t — 1)
—0.9u(t —1)— 0.87u(t —2) — 0.31u(t — 3) — 0.105u(t — 4).

The plant controlled with the model reference controller above can be simulated for
¢t €[1,100] using the following code:

A= [1-1.9 0.9]

Bbar = [1 0.5 0.25];
n=2; m=2; d-=3;
E = [1 -1.5 0.56]; Hbar = [0.04 0.02];

t_final = 100;
t = 1:t_final;

[Cr,Cu,Cy] = dmrc(d,Bbar,A,Hbar,E);

[nstate,x] = uvarma('init',d-1,Bbar,A); %y(t)/u(t-1)
[nstatem,xm] = uarma('init',d-1,Hbar,E); %ym(t)/r(t-1)
v(l) = uvarma('output',x,0,d-1,Bbar,3);
x = uarma('state',x,0,d-1,Bbar,A);
ym(l) = uarma('output',xm,1,d-1,Hbar,E);
xm = uarma('state',xm,1l,d-1,Hbar,E);
for k = 1:d-1,
r(k) = 1;
ym(k+1l) = uarma('output',xm,r(k),d-1,Hbar,E);
xm = uarma('state',xm,r(k),d-1,Hbar,E);
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end

Wr = [x(1); O];
Wu = zeros(4,1);
Wy = [y(1);0];

for k = 1:t_final,
r(k+d-1) = 1;
ym(k+d) = uarma('output',xm,r(k+d-1),d-1,Hbar,E);
xm = uarma('state',xm,r(k+d-1),d-1,Hbar,E);
u(k) = Cr*Wr+Cu*Wu+Cy*Wy;
v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);
x = uarma('state',x,u(k),d-1,Bbar,A);

Wr = [r(k+1);Wr(l)];

wWu = [u(k);Wu(l:3)];

Wy = [y(k+1);Wy(1)]1;
end;

The responses for r(t) =1 and r(z) =1+sin(0.1¢) are plotted in Figures 7C.1 and 7C.2.
The response is smoother but the settling time is greater than those of the one-step-ahead
control. |

- Yp
Y

-05

10 20 30 40 50 60 70 80 90 100
t

Figure 7C.1 Time history of the output y for r(t) =1 in Example 7.5.1.



Page 7C.19 Chapter 7. Complementary Material

15

051

05 I i 1 i I i I i
10 20 30 40 S0 60 70 80 920 100

t

Figure 7C.2 Time history of the output y for r(t) =1-+sin(0.1¢) in Example 7.5.1.

Example 7.5.2 The following is a reduced model for the dynamics of a hard-disk drive
(HDD) servo system which is obtained by ignoring the resonance characteristics and
higher-frequency flexible modes in the system

K
y=H(s)u with H(s) :—zp,
s

where y and u are the HDD sensor output, which represent the position of the reading

magnet of the HDD with respect to the center of the desired disk track and actuator input,
respectively. Assume that it is required for the output (the position of the reading head) to
track a square reference signal, a piecewise constant signal switching between the values
0 pgm and I ym (switching occurs every 2 msec ).

6 . . . .
Let K,=10". To apply a digital control, we first need to discretize our plant.

Consider a sampling frequency of 10 KHz (7, = 0.1 msec ). The zero-order hold (ZOH)
equivalent of H(s) at this sampling frequency is

0.005¢ +0.005

H =
@ g —2q+1

Hence, denoting u(kT,) and y(kT,) as u[k]and y[k], respectively, the corresponding
ARMA model takes the form

Alg")ytk1=B(q ' )ulk],

where
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A(q”) =1-2q"4+q7,
B(q')=q"'(0.005+0.005¢")=q"'B(q").

In order to design a model reference controller for the above control task, we first need to
choose a stable reference model with a steady-state value of 1 as before. Let this
reference model be

E(q")y,(t)=q"H(q ")r(1)

with
E(g')=1-09¢"+02q,
H(q")=02+0.1q".
Solving
F(g')A(g')+4'G(q)=E@",
we obtain

Fla)=
G(qfl) =1.1-0.8¢",
3a")=Fla")Bla ") =005 voonsy

Hence the control law is obtained as

1 = — _
ulk] :B—H(q*‘)r[k]—G(q”)y[k]—qﬁ (g7 Julk—11
0
=40r[k]+20r[k —1]—220y[k] 4+ 160y[k]— u[k].

Applying the square reference signal above, simulation results for the MRC-controlled
plant are shown in Figure 7C.3. Compared to the one-step-ahead control of the system,
the response is slower and smoother, and the energy of the command signal is much
smaller. |
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Figure 7C.3 Time histories of the input and output signals in Example 7.5.2.

The MATLAB function udmracdr incorporating some functions to generate the
parameter estimates can be used to implement the direct MRAC algorithm presented in
section 7.2.3, as demonstrated in Examples 7.5.3 and 7.5.4. In order to implement the
indirect MRAC algorithm given in section 7.2.4, the function udmracidr can be used,
as demonstrated in Example 7.5.3. If any robustness modification is needed, urobust
can be incorporated to perform this modification.

Example 7.5.3 Let us perform the control task of Example 7.5.1 assuming that the plant

parameters are not available this time and using a direct model reference adaptive
controller. The control scheme will be based on the parametric model

u(t) = 0" (1),
where

o) =[E(g ") 3t +3). 30—y~ D —ult ... —u(t — D)

T
" 1 _ _ = -
0 :\ﬁ_o 8o & ﬂl ﬁz& .

The control law is given by
u(t)=0" (06 (1),

where
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(1) =[H (g ) r(e),—y(0), —y(t = D, —u(t = 1),...,—u(t — 4) "

We can use the following recursive least-squares (RLS) algorithm with start-up forgetting
(8(0)=0.1,38, =0.9) to generate the parameter estimates:

P(t—1)¢(r-3) (
o P
_ ) Pl=ye(r=3)¢" (1-3)P(1—1)
P(1)=—=|P(r—1) B +¢" (1—3)P(1—1)¢(r—3)
B(t)=BB(t—1)+1-8,
0(t) = Pr(0 (1)),

0()=0(r—1)+

y(t)— 0" (t—l)(b(t—?a)), 0(0)=11,0....,01,

. PO)=1,

where the projection mapping Pr(-) is chosen to guarantee 0.1 <6, <10. Noting that the
reference model is

E(q ')y, (1)=qH(qg")r(1),
where

E(q')=1-15¢"+0.56q",

H(q™)=00440.02q",
the following code can be used to simulate the control of the plant:
A=1[1-1.9 0.9]1;
Bbar = [1 0.5 0.25

]

1;
3; kE = 2; 1 = 1;
[0.04 0.027;

n=2; m=2; d

E=[1 -1.5 0.56]; Hbar

t_final = 100;
t = 1:t_final;

thetal0 = zeros(7,1);
thetal0 (1) = 1;
Pj = uparproj ('hyperplane',1,0.1,10);
P = eye(7);
ArgLS = urlsarg('startup forgetting',0.1,0.9);
x_pi = [thetal; P(:);0.17;
[n_c, x_c] = udmracdr('init',[n d m kE 1]);
[nstate,x] = uarma('init',d-1,Bbar,d); %y(t)
[nstatem,xm] = uarma('init',d-1,Hbar,E); %ym
v(l) = uvarma('output',x,0,d-1,Bbar,A);
x = uarma('state',x,0,d-1,Bbar,A);
ym(l) = uarma('output',xm,1,d-1,Hbar,E);
xm = uarma('state',xm,1l,d-1,Hbar,E);
for k = 1:d-1,
r(k) = 1;
ym(k+1l) = uarma('output',xm,r(k),d-1,Hbar,E);
xm = uarma('state',xm,r(k),d-1,Hbar,E);



Page 7C.23 Chapter 7. Complementary Material

end

for k = 1:t_final,
r(k+d-1) = 1;
ym(k+d) = uarma('output',xm,r (k+d-1),d-1,Hbar,E);
xm = uarma('state',xm,r(k+d-1),d-1,Hbar,E);
[u_old phi] = udmracdr('regressor',x_c,y(k),[n d m kE], E);
Xx_pi = udrls(x_pi, u_old, phi, 0, ArgLS, [], P3j);
theta(:,k) = x_pi(1:7);
u (k) =udmracdr ('control',x_c, [y(k) r(k)],[n d m kE
1], theta(:, k), Hbar) ;
v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);
X = uarma('state',x,u(k),d-1,Bbar,A);
x_c = udmracdr('state', x_c, [u(k) y(k) r(k)], [ndmKkE 1]);
end;

The simulation results are plotted in Figures 7C.4, 7C.5, and 7C.6. The difference
compared to the adaptive one-step-ahead control is significant. The overshoot is brought
to an acceptable range.

1
E—y
— 0.8
S0.8;
0.7
; 06
60 80 100 0 20 40 60 80 100
05 : 0.1
0.4 : - o
03 -0.1
~ -
==} D
02 02
01t — 03}
=
0 0.4
0 20 40 60 80 100 20 40 60 80 100

Figure 7C.4 Time histories of the output y and parameter estimates 0,,0,,0, for
r(t)=1 in Example 7.5.3.
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Figure 7C.5 Time histories of the parameter estimates 9,,...,0, for r(t)=1 in
Example 7.5.3.
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Figure 7C.6 Time history of the output y for r(t) =1+ 3sin(0.5¢) in Example 7.5.3.

We can repeat the same task using indirect MRAC. In order to do this, we first
estimate the system parameters based on the linear parametric model

Y1) = 0" (1),
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where

o) = [u(t = 3),u(t — 4),u(t = 5),—y(t = 1), —y(t = 2)I",
0 =[byby,byr ]

0°

The parameter estimate vector H(t):[I;O(t),lgl(t),l;z(t),&l(t),&z(t)]T can be obtained
using any PI algorithm with parameter projection to keep l;O away from zero, e.g.,
0.1<6, <10. Let us use the following RLS algorithm with start-up forgetting as before:

P(t—1)o(1) (
Bt)+" (1) P(1=1)9(1)
RO B o _P(1=1)¢(r)e" (1) P(r—1)
PO= 5017 ) 0T & ()P0 e
B(t)=p6(t—1)+1-43,
006 = [B,(0).5,1).5,(1).4,0).4,(0)] = Pr(B(0).

0(t)=0(t—1)+

Y =0 (1=1)¢(1)), 0(0)=I[10,...,01",

1

. PO)=1,

Computing A(g™',1)=1+4,()q " +a,(t)q > and Blg",t)=by(t)+b,(t)g ™" +b,(t)g >,
we solve the equation

A

F(q 't)A(q " t)+q “G(q 1) = E@™;
form the polynomials

Bq™ = 05,(t)+5,(1)g ™" ++6,(1)g* = Fq 0B 1),

~ 1 ~
G(q_l’t): = G(q_l,f),
B, (1)
E@qJﬁ:Al(Bquyﬁ%O»
By (7)

and generate the control signal u as

The following code can be used for simulation:

A=1[1-1.9 0.9];

Bbar = [1 0.5 0.25];
n=2; m=2; d=23; ki =2; 1 =1;
E = [1 -1.5 0.56]; Hbar = [0.04 0.02];

t_final = 100;
t = 1:t_final;

theta0 = zeros(5,1);



Page 7C.26 Chapter 7. Complementary Material

thetalO (1) = 1;
Pj = uparproj ('hyperplane',1,0.1,10);
P = eye(5);
ArgLS = urlsarg('startup forgetting',0.1,0.9);
x_pi = [thetal; P(:);0.17;
[n_c, x_c] = udmracidr('init',[n d m kE 1]);
[nstate,x] = uvarma('init',d-1,Bbar,d); %y (t)
[nstatem,xm] = uarma('init',d-1,Hbar,E); %ym
v(l) = uvarma('output',x,0,d-1,Bbar,A);
x = uarma('state',x,0,d-1,Bbar,A);
ym(l) = uarma('output',xm,1,d-1,Hbar,E);
xm = uarma('state',xm,1l,d-1,Hbar,E);
for k = 1:d-1,
r(k) = 1;
ym(k+1l) = uarma('output',xm,r(k),d-1,Hbar,E);
xm = uarma ('state',xm,r(k),d-1,Hbar,E);
end

/u(t-1)
(t)/r(t-1)

for k = 1:t_final,
r(k+d-1) = 1;
ym(k+d) = uarma('output',xm,r(k+d-1),d-1,Hbar,E);
xm = uarma('state',xm,r(k+d-1),d-1,Hbar,E);
phi = udmracidr('regressor',x_c,[n d m kE]);
X_pi = udrls(x_pi, vy(k), phi, 0, ArgLS, [], P3j);
theta(:,k) = x pi(1:5);
u(k)=udmracidr ('control',x_c, [yv(k) r(k)],[n d m kE
1], theta(:,k),Hbar,E);

v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);

X = uarma('state',x,u(k),d-1,Bbar,A);

x_c = udmracidr('state', x_c, [u(k) y(k) r(k)], [n dm
kE 11);
end;

The results are plotted in Figures 7C.7 and 7C.8. The transient behavior is worse than the
direct MRAC case and better than the behaviors obtained via adaptive one-step-ahead
controllers. |



Page 7C.27 Chapter 7. Complementary Material

1.5 JH
o 1
05 - ‘ ‘ :
o 20 40 60 80 100
15
0.6
’
0.4 M
<05 P
0 oJ
05 0.2t
20 40 B0 80 100 0 20 40 60 80 100
05 1
0 |
05 05
La=3 1 @m
. 0
15
2 : ; : : 0.5
0 200 40 B0 80 100 o 20 40 60 80 100

Figure 7C.7 Time histories of the output y and parameter estimates 0, for
v, () =1 using indirect MRAC in Example 7.5.3.
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Figure 7C.8 Time history of the output y for y, (t)=1+3sin(0.5¢) using indirect
MRAC in Example 7.5.3.

Example 7.5.4 Let us perform the control task of Example 7.5.2 assuming that the plant
parameters are not available this time and using a direct model reference adaptive
controller. The control scheme will be based on the parametric model
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ulk] = 0" ¢[k]

with

Ok1 = [E (g ) Tk + 11 ~yTk] —ylk — 1,k — 11|
T
0 _\ﬂ_,go,gl,ﬂ]

0

The control law is given by
ulk] = 0" [k][k],
where
oLkl =[H(q "yrlkl,—ylk],.—ylk — 1], —ulk —1]]".

Let r[k] be a square signal as before. We can use the RLS algorithm with start-up
forgetting of Example 7.5.2 without any change other than choosing the initial estimate
vector as [500,0,0,0]" and the projection mapping Pr() so that 1<6, <1000 is

guaranteed. The following code can be used to simulate the control of the HDD servo
system:

AA=[1-217;

Bbar = 0.005*[1 1];

n=2; m=1; d=1; kE = 2; 1 = 1;
Ts = 0.1;

E=[1-0.9 0.2]; Hbar = [0.15 0.15];

t_final = 100;
t = Ts*(1l:t_final);

thetal0 = zeros(4,1);

theta0 (1) = 500;

Pj = uparproj ('hyperplane',1,1,1000);

P = eye(4d);

ArgLS = urlsarg('startup forgetting',0.1,0.9);
x_pi = [thetal; P(:);0.17;

[n_c, x_c] = udmracdr('init',[n d m kE 11);
[nstate,x] = uvarma('init',d-1,Bbar,d); %y (t)
[nstatem,xm] = uvarma('init',d-1,Hbar,E); %ym
v(l) = uarma('output',x,0,d-1,Bbar,A);

x = uarma('state',x,0,d-1,Bbar,A);

ym(l) = uarma('output',xm,0,d-1,Hbar,E);

xm = uarma('state',xm,1l,d-1,Hbar,E);

/u(t-1)
(t) /r(t-1)

for =1

) = mod(floor(k/20)+1,2);

k+1) = uarma('output',xm,r(k),d-1,Hbar,E);

xm = uarma('state',xm,r(k),d-1,Hbar,E);

[u_old phi] = udmracdr('regressor',x_c,y(k),[n d m kKE], E);
x_pi = udrls(x_pi, u_old, phi, 0, ArgLS, [], Pj);
theta(:,k) = x pi(1:4);
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u (k) =udmracdr('control',x_c,[y(k) r(k)]l,[n d m kE
1], theta(:,k),Hbar) ;

v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);

x = uarma('state',x,u(k),d-1,Bbar,A);

x_c = udmracdr ('state', x_c, [u(k) y(k) r(k)], [ndmkE 1]);
end;

The results are plotted in Figure 7C.9. The transient behavior is significantly better than
the cases with the adaptive one-step-ahead controllers. Energy of the control signal is less
as well. |

-y
—y

m

Y (rm)

500~

500 I i i I I i i i
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Figure 7C.9 Time histories of the input and output signals in Example 7.5.4.

7.5.2 Adaptive Prediction and Control

The Adaptive Control Toolbox provides a rich tool set for adaptive prediction and one-
step-ahead predictive control. Before introducing the features provided in the toolbox, we
revisit the adaptive prediction approaches to cover some concepts omitted in the main
text. After this revisit, a number of examples will be provided to demonstrate the use of
the Adapative Control Toolbox for designing and implementing adaptive prediction and
one-step-ahead control schemes.
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Adaptive Prediction

Consider the ARMA model
Alg™")y(r)=B(q")u(r). (7C.63)
where

A(q”):l—&—alq’l +--taq”,

Blg')=q‘(by+-+b,a")=q "Blg"),

d is the so-called plant delay, u is the input, and y is the output. The output of the model
at the time 7+ d can be expressed as

R(q")y(t+d)=G(q " )y(t)+F(q")B(q " )u(t), (7C.64)

where R(g ')is a design polynomial usually chosen as R(g')=1land F(q'),

G(q ") are computed by solving the Bezout equation
F(q')A(g)+q'G(q")=R(q"). (7C.65)
Equation (7C.65) has a unique solution in the form

Flg")=1+fig "+t frg ™)
Glg')=g+ga ' ++g_a""

for R(g”")=1 [1].
Direct Adaptive Predictor

When the coefficients of A(g™'),B(g™") in (7C.63) are unknown, we express (7C.64) in
the form of an SPM. Choosing R(g ') =1 for simplicity and defining

Blqgy=FqBlg ) =8 +B8a" ++B,,.a """
we obtain
y(t+d)=0"¢(1), (7C.66)
where

A(0) = [u(),u(t —=1),...ou(t —d —m+1),—y(0),—y(t —1),...,—y(t —n+ DT,
0 = [ﬁO’ﬂl""’ﬂder—l’_gO""’_g"*lr'

Since y(t+d) is not available for measurement at time ¢ we rewrite (7C.66) as
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(1) = 07 4t — d). (7C.67)

Any of the PI algorithms discussed in Chapter 4 can be used to generate 6(¢), the
estimate of #° at time 7. The only modification needed is replacement of ¢(t) and z
with ¢(t —d) and y, respectively. Then the estimate of y(¢r +d) is given by

It +d) = 0" (1)) (7C.68)

Indirect Adaptive Predictor
In this case, the DARMA model
A(q")y(t) = q"@(q’l )u(t)
is first expressed as
y(1)=10"9(), (7C.69)
where

0" =[by .

P

o) =[ut—d),....u(t—d—m),—y(t—=1),...,.—yt—n)]".

T
a, ... an},

m?

Using a PI algorithm and (7C.69), we generate the estimate 0,(f) of 9; at time ¢ and

form the estimated polynomials

Alg 1) =144 ++a,0q ",
. . R (7C.70)
B(g 1) =by()+-+b, (g "
Solving
F(q1)A(g" 1) +q"G(q 1) =1 (7C.71)

for F (g ",1), (A?(q’1 ,1) at each time ¢, the indirect adaptive predictor estimate is obtained
as

(it +d)= é(q"l,t) y(t)+ﬁ(q-‘,t)é(q-1,z)u(t). (7C.72)

When the coefficients of A(g™'),B(g™') in (7C.63) are known, the MATLAB
functions diophant and dprd can be used to solve the Bezout equation and
construct the predictor, respectively, as demonstrated in Examples 7.5.5 and 7.5.6. If the
coefficients of A(g™'),B(g™') in (7C.63) are unknown, the MATLAB functions
udprddr and udprdidr can be used to simulate, respectively, the direct and indirect
adaptive prediction algorithms above, as demonstrated in Examples 7.5.7-7.5.10.
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Example 7.5.5 Consider the plant
y)—1.9y(¢ —1)+0.9y(t —2) = u(t — 3) + 0.5u(t — 4) + 0.25u(t — 3).

Let us design a 3-steps-ahead predictor for this plant. First, we need to put the system into
the generic ARMA form as

Alg™)y(t)=B(q")ul2),
where
Alg)=1-19¢"+0947,
B(g')=q"B(q"')=q"(14+05¢" +0.25¢7).
To construct the predictor, we need to solve the Bezout equation
Pl ')Al )+ a6l =
the solution in the form

Flg")=1+fq"+5a",

Glg')=g +2q"

is unique. One can use different methods [1,2,3] to solve this equation by hand. We will
use the MATLAB function diophant for this task. The code

A= [1-1.9 0.91;

Bbar = [1 0.5 0.25];

ad=[00017;

POLYTYPE = 1; % showing the polynomials are in the form
% a0 + al g*-1 +

[F, G, RETYPE] = diophant(A, g d, 1, POLYTYPE)

beta = conv(F,Bbar)

results in
Flg ") =1+1.9¢ " +271q 2,
G(g')=3439-2439¢",
B(g")=F(q")B(g")=1+24¢" +39147 +1.83g~" +0.67755".

Hence, the predictor equation is found as
$(1+3)=(3439-2.439" ) y(1)+ (14249 +3.91g> +1.83¢ " +0.6775¢ *)u(r).

The same predictor could be constructed directly by using dprd as follows:

d = 3;
A =[1 -1.9 0.9];
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Bbar = [1 0.5 0.25];
[beta, G] = dprd(d, Bbar, A)

Since there is no disturbance or uncertainty affecting the system, (¢ + 3) = y(¢ +3) will
be satisfied for # >3 (assuming that the prediction is started at 1 =0). |

Example 7.5.6 Consider the signal y(¢)=coswt, with w=2Z. Let us construct a 10-
steps-ahead linear predictor to predict the future values of y(f) using the current and
previous measurements. To do this, we first observe that

coswt + cos(wt —2w) = 2cosw cos(wt —w) .

Based on this observation, we construct the ARMA model as
A<q71>y<t) =0

with A(g')=1-2coswq ' +¢>. To construct the predictor, we solve the Bezout

equation
Pl Al +a ol =)

to obtain G(g'). Note that since B(g')=0, we do not need F(q'). Using the
function diophant, we obtain G(g ') = —2.247+2.247q " . Hence the predictor is
obtained as

F(14+10) = —2.247y(1) +2.247y(t - 1). u

Example 7.5.7 Consider the plant of Example 7.5.5 driven by the input signal
u(t) = cos T il=0.6cos| ¢ +0.3sin lt—i—z .
20 35 12 3

Assume that the plant parameters are not known, i.e., we know only that the plant is in
the form

A(q’l)y(t = B(q’l)u(t),
A(q’l) =l+a,q '+ azq’z,
Bla')=q"Bla')=q"(by+ba ' +ba?).

Let us design a 3-steps-ahead adaptive predictor for this plant. The adaptive predictor will
have the form

It +d)= 0" ()e(0),
where

o) = [u(t),u(t —1),...,u(1 — 4),—y(1),~y(t = D'
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and 6(t) is the estimate of the parameter vector 6" =[8,,0,.,...,3,,—&,—g 1 » which

consists of parameters of the polynomials 5(¢ ') and G(g ') described in the text. We
need to perform the parameter estimation based on the parametric model

y()=0"p(t—d).

Let us use normalized parameter projection algorithms for estimation; i.e., to obtain 6(¢),
let us use

T

(y =0t =D (t—d)), 0(0)=]0.....0],

o Ple-ne-a)

T R e L
IO e A TS
PO g e PO

Then we can use the following code to simulate the process and the prediction for
t €[1,100]:

A= 1[1-1.9 0.9]1;
Bbar = [1 0.5 0.25];
n=2;m=2; d-=3;

t_final = 100;
t = 1:t_final;

theta0 = zeros(7,1);

P = eye(7);

x_pi = [thetal; P(:)];

[nstate,x] = ufilt('init',Bbar,3);
[n_pr, x pr] = udprddr('init',[n d m]);

for k = 1:t_final,
k3 k-3;
u_k = cos(pi/20*k)-0.6*cos(pi/35*k)+0.3*sin(pi/12*k+pi/3);
u_k3 = cos(pi/20*k3)-0.6*cos (pi/35*k3)+0.3*sin(pi/12*k3+pi/3);
v(k) = ufilt('output', x, u_k3, Bbar, A, 0);
x = ufilt('state', x, u_k3, Bbar, A);
phi = udprddr('regressor', x_pr, [u_k y(k)], [n d m]);
X_pi = udproj('orth', x_pi, y(k), phi);
theta(:,k) = x_ pi(1l:7);
vp (k+3) = udprddr('predict', x_pr, [u_k y(k
X_pr = udprddr('state', x_pr, [u_k yv(k)], [
end;

The results are plotted in Figure 7C.10. We can see from these results that the settlement
step for parameter estimation is about 50. Comparing with the results of Example 7.5.5,
we also see that all of the parameter estimates converge to their real values. Settlement
for output prediction is much faster. The output signal is predicted perfectly for
t>12. |

Example 7.5.8 Consider the sinusoidal signal prediction problem of Example 7.5.6, i.e.,
prediction of the signal y(¢)=coswt, with w =Z . This time, assume that it is known

that the signal y is in the form y(#) = acoswt , but the coefficients «,w are unknown.
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Let us construct a 10-steps-ahead linear predictor to predict the future values of y(¢), as

before.
Similar to Example 7.5.6, first observe that

acoswt + acos(wt —2w) = 2cosw (a cos(wt — w)) .
and then construct the ARMA model as
A(q"l)y(t) =0,

where A(g')=1-2coswqg '+g > (B=0). We can write the adaptive predictor
equations in the format of (7C.68) as

(1t +10)= 0" ()e(1),
where

o) =10,...,0,—y(0),—y(r = DI'
10

and 0(r) is the estimate of the parameter vector

o T
0 =I0,...,0,—g,,—¢g,1',

10

where g,,g, are coefficients of G(¢ ') as described in the text. We can get rid of the

zero entries to simplify our model. An adaptive prediction scheme can be obtained by
integrating the simplified model and the pure projection algorithm as follows:

(1 +10)=0" ()¢ (1),
o) =[—y(1),—y(t DI,
¢ (t—10)

9(1) :5(#1)%7 (—10)7(—10) (y()=0" (t=1)¢(r—10)), B©O)=[0 0].
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Figure 7C.10 Time histories of the output y, the output prediction y, and the

parameter estimates 0, in Example 7.5.7.
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The following code, which is based on the first parameterization above, can be used to
simulate the prediction for # €[1,100]:

w = pi/7;
n 2; m = 0; d = 10;

t_final = 100;
t = 1:t_final;

X_pl = zeros(12,1);
[n_pr, x_pr] = udprddr('init',[n d m]);

for k = 1:t_final,
y (k) = cos(w*k);
phi = udprddr ('regressor', x_pr, [0 y(k)], [n d m]);
xX_pi = udproj('pure', x_pi, y(k), phi);
theta(:,k) = x_pi;
vp (k+10) = udprddr('predict', x pr, [0 yv(k)], [n d m],
theta(:,k));
x_pr = udprddr('state', x_pr, [0 y(k)], [n d m]);
end;

The results are plotted in Figure 7C.11. The sinusoidal signal y(¢) is predicted perfectly
after the fortieth step. |

— oyt

IR,

0.5+

S0 60 70 80 20 100

Figure 7C.11 Time histories of the signal y and the signal prediction y in Example
7.5.8.
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Example 7.5.9 Let us repeat the adaptive prediction task of Example 7.5.7 using an
indirect adaptive predictor and RLS algorithm with start-up forgetting. The integrated
prediction scheme will be as follows:

A1) = [u(t —3),u(t — 4),u(t — 5),—y(1 — 1), —y(t = 2)I',
B(1)=68(1—1)+1-43,
L p(,_l)_a(f)P(t—l)cb(t)ch (1) P(t—1)
By+a(t)e” (1) P(t—1)o(r) |
P(t—1)¢(1) (
B(t)+¢" (1) P(t=1)0(1)

(1) = [by(0).b,(1).5,(0).4, (1), (r)]T —0(r—1)+ A0 0" (1-1)8 (1)),

Y

(¢ 1) =1+4,(0g " +a,(0)g ",
(q7".1) = by () + b () +b,(1)g
(4 Al ) Gla ) =1

> O

(t+3)= é(q“,t)y(t)+ﬁ(q“,t)l§(q‘l,t)u(t).

Selecting 0(0) =[0,...,0]",P(0)=1,3(0) = 0.7,3, = 0.99, the following code can be
used to simulate the process and the prediction for ¢ € [1,100]:

A= [1 -1.9 0.9
Bbar = [1 0.5 0.
n=2;m-=2; d

t_final = 100;
t = 1:t_final;

theta0 = zeros(5,1);

P = eye(5);

ArgLS = urlsarg('startup forgetting',0.7,0.99);
x_pi = [thetal; P(:);0.7]1;

[nstate,x] = ufilt('init', Bbar,A);

[n_pr, x_pr] = udprdidr('init',[n d m]);

for k 1:t_final,
k3 k-3;
u_k = cos(pi/20*k)-0.6*cos (pi/35*k)+0.3*sin(pi/12*k+pi/3);
u_k3 = cos(pi/20*k3)-0.6*cos (pi/35*k3)+0.3*sin(pi/12*k3+pi/3);
v(k) = ufilt('output', x, u_k3, Bbar, A, 0);
x = ufilt('state', x, u_k3, Bbar, A);
phi = udprdidr ('regressor', x_pr, [u k y(k)], [n d m]);
Xx_pi = udrls(x_pi, y(k), phi, 0, ArgLS);
theta(:,k) = x_pi(l:5);
vp (k+3) = udprdidr('predict', x pr, [u_k y(k
X_pr = udprdidr('state', x_pr, [u_k yv(k)], [
end;

)1, 1
ndm

);

The results, which are comparable to those of Example 7.5.7, are plotted in Figure
7C.12. |

n d m], thetaf(:
]
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Figure 7C.12 Time histories of the output y, the output prediction y, and the

parameter estimates 0, in Example 7.5.9.

Example 7.5.10 Consider the adaptive signal prediction problem of Example 7.5.8. Let
us perform the same task using an indirect adaptive predictor and RLS with start-up
forgetting.

The integrated prediction scheme will be as follows:

o) =[—y(t—D,—yt -2,
B(t)=p6(t—1)+1-5,
_ Uy al) P =1)é(e)¢" (1) P 1)
PO 50" ) s el (21000 |
P(t—1)¢(1) (
Bt)+6" (1) P(r=1)0(1)

o(1)= [&l(t),&z(t)f =0(t—1)+ 2(t)—0" (1— 1)¢(t)),
Alg 1) =1+4,nq" +a,(t)q

I:"(q"l,t>fi(q_l,t) +q_dé<q_l,t) =1,

t+10)=G(q " ,1)y(0).
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Selecting  0(0) =[0,0]",P(0)=1,5(0)=0.7,3, = 0.99, the results plotted in Figure
7C.13 are obtained for r€[1,100]. The prediction behavior is comparable to that in
Example 7.5.8. |

¥y

40 50 60 70 80 90 100

Figure 7C.13 Time histories of the signal y and the signal prediction y in Example
7.5.10.

7.5.3 One-Step-Ahead Control

The MATLAB function dosac can be used to simulate the pure and weighted one-step-
ahead control algorithms above, as demonstrated in Examples 7.5.11 and 7.5.12.

Example 7.5.11 Consider the plant

y(@)—1.9y(t—1)+0.9y(t —2) = u(t —3) + 0.5u(t — 4) + 0.25u(t — 5)

of Examples 7.5.1 and 7.5.5. In Example 7.5.5 we had constructed a linear 3-steps-ahead
predictor for this plant, and we had found the predictor polynomials as

Flg')=1+19¢"+271g7,
G(g')=3439-2439q",
Blg")=F(q')B(q")=1+24q" +3.91g7 +1.83¢" +0.67757 ".
Assume that the signal y is initially at rest, i.e., y(0)=y(—1)=---=0. Now let us

design a pure 3-steps-ahead controller to bring y to 1, i.e., y, (t) =1V¢. Our controller
will be in the form (7.64). Hence computing o(g~") and 5(g”") as
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alg')=G(q"')=3439-2439¢",
B(q7")=24q " +391g7 +1.83¢" +0.6775¢ ",

we end up with the control law

u(t) =y (t+d)—3.439y(t)+2.439g ' y(t —1)— 2.4u(t —1)
—3.91u(t —2)— 1.83u(t — 3) — 0.6775u(t — 4).

One can use the MATLAB function dosac to generate the coefficients of the control
law directly. The plant controlled with the 3-steps-ahead controller above can be
simulated for ¢ € [1,20] using the following code:

A= [1-1.9 0.91;
Bbar = [1 0.5 0.25];
n=2;m=2; d= 3;

t_final = 20;
t = 1:t_final;
[Cym,Cu,Cy] = dosac(d,Bbar,3);

[nstate,x] = uvarma('init',d-1,Bbar,d); %y (t)/u(t-1)
v(l) = uvarma('output',x,0,d-1,Bbar,A);

x = uarma('state',x,0,d-1,Bbar,A);

Wu = zeros(4,1);

Wy = [y(1);0];

ym(l:d) = ones(1l,d);

for k = 1:t_final,
ym(k+d) = 1;
u(k) = Cym*ym(k+d)+Cu*Wu+Cy*Wy;
v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);
x = uarma('state',x,u(k),d-1,Bbar,A);
Wu = [u(k);Wu(1l:3)71;
Wy [y(k+1);Wy(1)]1;
end;

The result is plotted in Figure 7C.14. As seen in the figure, since the system parameters
are known, the reference signal is caught immediately.
To see the response for a nonconstant reference signal, let us repeat the simulation

for y, (1)=1+sin(0.1) and ¢ €[1,100]. The result is shown in Figure 7C.15. Tracking

is perfect as before, since the system parameters are known. |
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Figure 7C.14 Time history of the output y for y, (t) =1 in Example 7.5.11.
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Figure 7C.15 Time history of the output y for y, (t) =1+sin(0.1¢) in Example 7.5.11.

Example 7.5.12 Consider the HDD servo system of Example 7.5.2. Let us perform the
same control task using a one-step-ahead controller. Solving the Bezout equation
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Fla)ale”) a0l )=t

we obtain

G(q’l) =2—q,
B(g™")=0.005+0.005¢".

Now let us consider minimization of three different cost functions to construct our
controller, the cost function J, in (7.66), with A equal to 0, 0.1 3;, and 3; . Although
for A\ =0 the controller takes the form (7.64), let us use the generic form (7.68) for all of
the three cases. Hence, plugging 3'(g")=q(B(q ')—3,)=5x10" into (7.68), we
obtain

- 0.005(y, [k +1]—2y[k] —0.005ulk —11)
u =
2.5x107° + A

The control coefficients can also be obtained by MATLAB directly, using the code
[Cym,Cu,Cy] = dosac(d,Bbar,A, lambda) ;

The simulation results for the plant and the controller above are shown in Figures 7C.16,
7C.17, and 7C.18. The trade-off between tracking and energy of the input signal can

easily be seen in these plots. |
151
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Figure 7C.16 Time histories of the input and output signals for A\ =0 in Example
7.5.12.
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Figure 7C.17 Time histories of the input and output signals for \=0.13; in
Example 7.5.12.
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Figure 7C.18 Time histories of the input and output signals for X = (3; in Example
7.5.12.

The MATLAB function udosacdr used with some functions to generate the
parameter estimates can be used to run the one-step-ahead adaptive control algorithm
with direct approach, as demonstrated in Examples 7.5.13 and 7.5.14. In order to run the
pure and weighted one-step-ahead adaptive control algorithms based on the linear control
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form approach, the function udosaclef incorporated into some functions to generate
the parameter estimates can be used, as demonstrated in Examples 7.5.15 and 7.5.16.
Similarly, the function udosacidr can be used to run the indirect one-step-ahead
adaptive control scheme, as demonstrated in Example 7.5.17. If we desire any robustness
modification to be applied as well, urobust can be used to perform this modification.

Example 7.5.13 Consider the plant and the control tasks of Example 7.5.11 to track
constant and sinusoidal reference signals. Now assume that the plant parameters are not
known; i.e., we know only that the plant is in the form

A(q’l)y(t) = B(q’l)u(t),
A(q’l) =l+a,q"' —|—a2q’2,
Bla')=q"Bla')=q"(by+ba ' +bq).

Let us repeat the same control task under this condition. From the model orders we see
that the linear model to be used in parameter estimation will be

Yt +3)=0"¢(1),
where

¢ = [u(),u(t —1),...,u(t —4),—y(),—y(t =D,
0 =[By 514080081 -

Hence, the control law will be

u(t) = %m[—ﬁz Ou(t —1)—---— 05 (Hu(t —4) + 0, () y() + 0, () y(t =D+, (t +3)].

We can use the following RLS algorithm with start-up forgetting (3(0)=0.1,3, =0.9)
to generate the parameter estimates:

. P(t-1)¢(1-3)

0(1)=16( 1)+ﬂ(t)+¢7(;—3)P(t—1)¢’(f_3>
_ 1y Pu=1)e(t=3)¢" (1=3)P(r—1)

P(t)=—=|P(t-1) By+¢" (1=3)P(t—1)p(1—3)

B(t)=BB(t—1)+1-8,

0(t) = Pr(0 (1))

(y 0" (t=1)(t-3)), 00)=[1,0....,0T,

. PO)=1,

Choosing the projection mapping Pr() so that 0.5<6, <100 is guaranteed, the
following code can be used to simulate the control of the plant for #<[1,100] and

Y =1

A= [1-1.9 0.9

Bbar = [1 0.5 0.
da

n=2; m= 2;

t_final = 100;
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t = 1:t_final;

theta0 = zeros(7,1);

thetaO (1) = 1;

Pj = uparproj('hyperplane',1,0.5,100);

P = eye(7);

ArgLS = urlsarg('startup forgetting',0.1,0.9);

x_pi = [thetalO; P(:);0.1]1;

[nstate,x] = uvarma('init',d-1,Bbar,Ad); %y(t)/u(t-1)
[n_c, x_c] = udosacdr('init', [n d m]);

v(l) = uarma('output',x,0,d-1,Bbar,3);

X = uarma('state',x,0,d-1,Bbar,A);

ym(l:d) = ones(1l,d);

for k = 1:t_final,

ym(k+d) = 1;

phi = udosacdr ('regressor', x_c, [n d m]);

X_pi = udrls(x_pi, v(k), phi, 0, ArgLS, [], P3j);

theta(:,k) = x pi(1:7);

u(k) = c

v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);

X = uarma('state',x,u(k),d-1,Bbar,A);

x_c = udosacdr('state', x_c, [u(k) v(k)], [n d m]);
end;

The result is plotted in Figures 7C.19 and 7C.20. The result of application of the same
control structure for a sinusoidal y  is plotted in Figure 7C.21. For both cases, although

the transient behavior is poor, the parameter estimates converge to their true values, and

the output converges to the desired value. |
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Figure 7C.19 Time histories of the output y and parameter estimates 6,,6,,6, for
v, () =1 in Example 7.5.13.

udosacdr ('control',x ¢, [yv(k) ym(k+d)], [n d m], theta(:,k));
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Figure 7C.20 Time histories of the parameter estimates 0,,...,0, for y (t)=1 in
Example 7.5.13.
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Figure 7C.21 Time history of the output y for y, (t) =1+ 3sin(0.5¢) in Example 7.5.13.

Example 7.5.14 Consider the HDD system of 7.5.2 and the one-step-ahead control
design task of Example 7.5.12. This time, assume that the plant parameters are not
known; i.e., we have only a model with unknown coefficients. Using the knowledge
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about the orders n,d,m of the system, we deduce that the linear model to be used in
parameter estimation is

Mk +11= 07 gk,
where
k] = [ulkl,ulk —11,~y[k],—ylk—11],
and the control law is

1
ulk] = m(—ﬁz[k]u[k — 1]+ 0,[k1y[k1+ 0, [kIy[k — 1]+, [k +1]).

Using the RLS algorithm with start-up forgetting (3(0) =0.7,3, =0.99 ) as before, we
generate the parameter estimates

Plk—11¢[k —1]
Blk1+¢" [k —11P[k —11¢[k —1]
6[0]=[0.003,0,0,07",
Plk]— 1 Plk—1]— Plk— 1]¢T[k —11¢"[k—11P[k—1] ’
Blk] Blk]+¢" [k —1]P[k —1]¢[k —1]
Bkl = B,k —1]+1-3,
0[k] = Pr(0[k)).

Olk]1=0[k—11+

(yK1—6" [k — 1161k —11),

P[0]=1,

Choosing the projection mapping Pr(-) so that 0.003 <6 <1 is guaranteed, the

simulation results shown in Figures 7C.22 and 7C.23 are obtained. Although the tracking
is perfect at steady state, there is a very large overshoot in the response. |
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Figure 7C.22 Time histories of the input and output signals in Example 7.5.14.
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Figure 7C.23 Time histories of the parameter estimates in Example 7.5.14.

Example 7.5.15 Let us repeat Example 7.5.13 using the linear control form approach
instead of the direct approach. The control scheme will be based on the parametric model

u(t) = 0" (1),
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where

P(1) = [y(t +3),—y(1),—y(t = 1), —u(t = 1),...,—u(t = 4)]",
R T
0 = ,6_0 8 & 61 64

The control law is given by
u(t) = 0" (1),
where
) =1y, +3),—yO), =yt =1, —u(t —1),...,—ut = 4)]" .

If we use the RLS algorithm with start-up forgetting as before, the adaptive law to
generate the parameter estimates will be as follows:

o P(1—1)¢(r-3)
9(1)—0( 1)+ﬁ([>+¢T<l—3)P([_1)¢(t_3>
1y P8 pl
P(1)=7r5|P(e=1) BO)+¢" (1=3)P(1-1)6(1-3)
B(t)=pB(t—1)+1-8,

0(1) = Pr(0 (1)).

. PO)=1,

Choosing the projection mapping Pr(-) so that 0.1 <6, <10 is guaranteed, the following
code can be used to simulate the control of the plant for # €[1,100] and y, =1:

A =[1-1.9 0.9
Bbar = [1 0.5 0.
n=2; m=2; d

t_final = 100;
t = 1:t_final;

theta0 = zeros(7,1);

thetaO(1l) = 1;

Pj = uparproj ('hyperplane',1,0.1,10);

P = eye(7);

ArgLS = urlsarg('startup forgetting',0.1,0.9);
x pi = [thetal; P(:);0.1];

x_pi = [thetalO;P(:)];

[nstate,x] = uvarma('init',d-1,Bbar,A);
[n_c, x_c] = udosaclcf('init',[n d m]);
v(l) = uarma('output',x,0,d-1,Bbar,3);
X = uarma('state',x,0,d-1,Bbar,A);
ym(l:d) = ones(1l,d);

sy (t)/u(t-1)

for k = 1:t_final,
yvm(k+d) = 1;
[u_old phi] = udosaclcf('regressor',x_c,y(k),[n d m]);

(ut=3)=0" (t=1)(t=3)), 6(0)=I1,0,...
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x_pi = udrls(x_pi, u_old, phi, 0, ArgLS, [1, PJj);
x_pi = udproj('orth',x_pi, u_old, phi, 0, Arg, Pj);
theta(:,k) = x_ pi(1l:7);

u (k) udosaclcf('control',x ¢, [y(k) ym(k+d)], [n d m],theta(:,k));
v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);

x = uarma('state',x,u(k),d-1,Bbar,A);

x_c = udosaclcf('state', x_c, [u(k) yv(k)]l, [n d m]);

end;

The simulation results are plotted in Figures 7C.24, 7C.25, and 7C.26. The behaviors are

comparable to those with the direct approach . |
30, 1.02
E—
2007 —y 1
10 ~
0.98
> 0= o
096"
-10
20t 0.94
-30 ; 092
0 20 40 80 80 100 0 20 40 80 80 100
4 05

[2)
:
=
[S=)

&2 ; -
15
1_
2+
0 25
0O 20 40 60 80 100 20 40 60 80 100

Figure 7C.24 Time histories of the output y and parameter estimates 6,,6,,6, for
v, () =1 in Example 7.5.15.
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Figure 7C.25 Time histories of the parameter estimates 0,,...,0, for y (t)=1 in
Example 7.5.15.
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Figure 7C.26 Time history of the output y for y, (t) =1+ 3sin(0.5¢t) in Example 7.5.15.

Example 7.5.16 Let us repeat Example 7.5.13 using the linear control form approach
instead of the direct approach with =0,y =0.0005, and v =0.005. The control

scheme will be based on the parametric model
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ulk]= 0" g[k],
with

Glk1 = [ylk + 11, —ylk],—y[k —1],—ulk = 111",

T

* 1 —_— —_— -
0 —wzavgmgwﬂl

The control law is given by

ulk] = 0" [k1p[k],

where
E[k] =y, lk+1],—ylk],—ylk—1],—ulk — 1.

We can use the RLS algorithm with start-up forgetting of Example 7.5.14 without any
change other than choosing the initial estimate vector as [500,0,0,0]" and noting the
difference between the first entries of 6 for the two cases. Choosing the projection
mapping Pr(-) so that 1<6, <1000 is guaranteed, the following code can be used to
simulate the control of the HDD system for ¢ €[1,100]:

A= [1 -2 17;

Bbar = 0.005*[1 1];
n=2; m=1; d=1;
Ts = 0.1;

t_final = 100;
t = Ts*(l:t_final);

gamma = 0.005;
theta0 = zeros(4,1);

thetalO (1) = 500;

Pj = uparproj('hyperplane',1,1,1000);

P = eye(4);

ArgLS = urlsarg('startup forgetting',0.1,0.9);

x_pi = [thetal; P(:);0.17;

[nstate,x] = uvarma('init',d-1,Bbar,Ad); %y(t)/u(t-1)
[n_c, x_c] = udosaclcf('init',[n d m]);

v(l) = uarma('output',x,0,d-1,Bbar,3);
X = uarma('state',x,0,d-1,Bbar,A);
ym(l) = 0;

for k = 1:t_final,
ym(k+d) = mod(floor(k/20)+1,2);

[u_old phi] = udosaclcf('regressor', x ¢, yv(k), [n d m],gamma) ;

X_pi;

X_pi = udrls(x_pi, u_old, phi, 0, ArgLSs, []1, Pj);

theta(:,k) = x_pi(l:4);

u(k) = udosaclcf('control',x_c, [v(k) ym(k+d)],[n d
m],theta(:,k),gamma) ;

v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);

x = uarma('state',x,u(k),d-1,Bbar,A);
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x_c = udosaclcf('state', x_c, [u(k) yv(k)], [n d m]);
end;

The results are plotted in Figures 7C.27, 7C.28, and 7C.29. The transient behavior is
comparable to that of Example 7.5.14, and the effect of the weighting coefficient is
comparable to the nonadaptive case, which was examined in Example 7.5.12. |
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Figure 7C.27 Time histories of the input and output signals for v =0 in Example 7.5.16.
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Figure 7C.28 Time histories of the input and output signals for ~ = 0.0005 in
Example 7.5.16.
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Figure 7C.29 Time histories of the input and output signals for ~=0.005in
Example 7.5.16.

Example 7.5.17 Let us repeat the adaptive one-step-ahead control task of Examples
7.5.13 and 7.5.15 using the indirect approach. Estimation of the system parameters will
be based on the linear parametric model

y(t) =07 (1)

with

0" =[by,b,by a4,
P(1) = [u(t —3),u(t — 4),u(t — 5),—y(t —1),—y(r = 2)]" .

The parameter estimate vector 6’(1‘):[1;0(1‘),1;] (t),l;z(t),&,(t),&z(t)]T can be obtained
using any PI algorithm with parameter projection to keep I;O away from zero, e.g.,

0.1<0, <10. For example, the RLS algorithm with start-up forgetting can be used
again as follows:

P(t—1)¢(1)
Br)+o" (1) P(t—1)0(1)
R B _P(t—1)¢(t)¢T(I)P(t—l)
Plr)= Pr=1) B(t)+¢" (1)P(t—1)¢(1)
ﬁ(t):ﬁlﬁ(t_l)—’_l_ﬁl’
0(6) = [by(1.5,(0).5,(1).4,0).4,0)|| = Pr@ (1))

0(t)=0(r—1)+

(y 0" (t=1)¢(t)), 60)=11,0,...,01,

. PO)=1,
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Having the parameter estimates, the control signal can be generated as follows:

_ a4+ d=G(g nyn—pB'(q” ,oue—1)

u(t) A
By (1)

where

Al =144 (1)g " +a,(1)g

Blg.)=by (1) +b, (1)q " +b,(1)g ",

F(g™.0Alg".0+q 'G(qg . =1,

Bla " =5,1)+ 5 ()" ++5,(1)a* =Bg ' .G(q 1),

A

B n=q(Ba " 0=3)=B(0)+B(1)g ' ++B,(1)q .

The following code can be used to simulate the control of the plant for ¢ €[1,100] and
v, =1:

A= [1 -1.9 0.9];
Bbar = [1 0.5 0.257;
n=2;m=2; d=3;

t _final = 100;
t = 1:t_final;

thetal0 = zeros(5,1);

thetaO (1) = 1;

Pj = uparproj ('hyperplane',1,0.1,10);

P = eye(5);

ArgLS = urlsarg('startup forgetting',0.1,0.9);
x_pi = [thetal; P(:);0.17;

[nstate,x] = uvarma('init',d-1,Bbar,A);
[n. ¢, x_c¢] = udosacidr('init',[n d m]);
v(l) = uvarma('output',x,0,d-1,Bbar,A):;
x = uarma('state',x,0,d-1,Bbar,d);
ym(l:d) = ones(1l,d);

sy (t) /u(t-1)

for k = 1:t_final,
ym(k+d) = 1;
phi = udosacidr('regressor',x_c,[n d m]);
x_pi = udrls(x_pi, y(k), phi, 0, ArgLS, [1, P3j);
theta(:,k) = x_pi(l:5);
u(k) = udosacidr('control',x_c, [y(k) ym(k+d)],[n d m],theta(:,k));
v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);
x = uarma('state',x,u(k),d-1,Bbar,A);
x_c = udosacidr('state', x_c, [u(k) yv(k)], [n d m]);
end;

The simulation results are plotted in Figures 7C.30 and 7C.31. The behaviors are
comparable to those with the previous approaches. |



Page 7C.57 Chapter 7. Complementary Material

1.5
10 J]H
> 07 o 1
\J\( — ym
10+ Y
i ‘ ‘ : i 0.5 i ‘ ‘ i
20 40 60 80 100 0 20 40 60 80 100
t
1.5
0.6
1
0.4 h
o' 05 o 0.2
0 0 J
05 2
0 20 40 60 80 100 0 20 40 60 80 100
05 T T - . 1
: [
05 05
g 1 Q)m
0
1.5
2 -0.5
0 20 40 60 80 100 20 40 60 80 100

Figure 7C.30 Time histories of the output y and parameter estimates 0, for

v, (t) =1 using indirect one-step-ahead adaptive control in Example 7.5.17.
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Figure 7C.31 Time history of the output y for y, (t) =1+ 3sin(0.5¢t) using indirect
one-step-ahead adaptive control in Example 7.5.17.



Page 7C.58 Chapter 7. Complementary Material

7.5.4 APPC

The MATLAB functions dppcdo, udppcdo, dppcsf, udppcsf, dppcimp, and
udppcimp can be used to run the three PPC algorithms presented in this chapter, as
demonstrated in Examples 7.5.18 and 7.5.19.

Example 7.5.18 Consider the ARMA model
(l 27" +q° ) y=¢q '(0.54+0.5¢ ")u,

which corresponds to a double integrator sampled with a sampling rate of 1 Hz. Let us
design a pole placement controller for this system so that the closed loop is stable and the
output tracks y, =1. First, we need to fix a monic Hurwitz polynomial of order

2n" —1=3. Let this polynomial be A*(q’l )=01-0. lq’] 1+ O.2q’l + 0.02q’2) . Next,
we need to solve the Bezout equation

Alg)L{a)+B(a7)Pla)=4(a7).
where A(g')=1-2¢g""'+¢* and B(g"')=¢ '(0.5+0.5¢"") . The solution is found as
L@ ) =1+40.7745¢"", P(g"')=2.651—1553¢".
Choosing M(q ') = P(q""), the final control law is found as
(14077450 Ju(r) = —(2.651-1.553¢ ") (y() -y, ( + d)),
or explicitly as
u(t) =2.651(y,, (t +1)—y(¢)) —1.553(y,, (t) — y(t —1)) — 0.7745u(t — 1) .

This system and the control scheme can be simulated using the following code:

A [1 -2 1]; Bbar = [0.5 0.57;
n 2; m=2; d=1;
As = conv([1l 0.2 0.02],[1 -0.11);

t_final = 20; t = 1:t_final;
[Cym,Cu,Cy] = dppcdo(d,Bbar,A,As);

[nstate,x] = uvarma('init',d-1,Bbar,Ad); %y(t)/u(t-1)
v(l) = uarma('output',x,0,d-1,Bbar,3);

x = uarma('state',x,0,d-1,Bbar,A);

wu = 0;

Wy = [y(1);0];

Wym = ones(2,1);

ym(l) = 1;

for k = 1:t_final,
ym(k+d) = 1;
Wym = [ym(k+d) ;Wym(1)];
u(k) = Cym*Wym+Cu*Wu+Cy*Wy;
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v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);
x = uarma('state',x,u(k),d-1,Bbar,A);

wWu = u(k);
Wy = [y(k+1);Wy(1)];
end;
The results are plotted in Figure 7C.32. n
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Figure 7C.32 Time histories of the input and output signals in Example 7.5.18.

Example 7.5.19 Consider the ARMA model of Example 7.5.18 in the existence of a
periodic disturbance so that the disturbed plant can be modeled as

(lJrcfl +q’2)(1—2q*1 +q’2)y = <1+q’l +q’2)q"(0.5+0.5q")u.

Let us again design a pole placement controller for this system so that the closed loop is
stable and the output tracks y, =1. First, we need to fix a monic Hurwitz polynomial of

order 2n° —1=7. Let this polynomial be A" (¢g')=(1-0.1g7")". Noting that the

reference signal satisfies (1—¢ ')y, =0, we need to solve the Bezout equation
Efa sl )pla)ala )+l ol )=o),

where A(g )=1-2¢"+q, Blg")=¢'(05+05¢"), S(g"H)=1—¢"', and
D(g")=1+¢g ' +¢*. The solution is found as

L(g")=1+0.7564¢"",
P(g")=1.087240.3585¢"" +0.0587¢ > —2.5389¢ > +1.5128¢*

Hence the control law is found as
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(140.7564g ™" — > —0.75644* u(r)
= —(1 0872 +0.3585¢ "' +-0.0587g > —2.5389¢ " + 1.5128q*4)(y(t) —y, (t+d)).

This system and the control scheme can be simulated using the following code:

Atilde = [1 -2 11;
Btilde = [0.5 0.5];
D=1[111];

A = conv(Atilde,D);
Bbar = conv(Btilde,D);
n=2; m=2; d=1;

As = [1 -0.17;
for 1 1:6,

As = conv(As,[1 -0.11);
end

t_final = 20;
t = 1:t_final;

s = [1-11;
[Cym,Cu,Cy] = dppcimp(d,Btilde,Atilde,D,S,As);

[nstate,x] = uvarma('init',d-1,Bbar,A); %y (t)/u(t-1)
v(l) = uarma('output',x,0,d-1,Bbar,3);

x = uarma('state',x,0,d-1,Bbar,3);

Wu = zeros(7,1);

Wy = [y(1l);zeros(4,1)];

Wym = ones(5,1);

ym(l) = 1;

for k = 1:t_final,
ym(k+d) = 1;
Wym = [ym(k+d) ;Wym(1:4)];
u(k) = Cym*Wym+Cu*Wu+Cy*Wy ;
v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);
X = uarma('state',x,u(k),d-1,Bbar,A);
Wu = [u(k);Wu(l:6)171;
Wy = [y(k+1);Wy(1:4)];
end;

The results are plotted in Figure 7C.33. |
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Figure 7C.33 Time histories of the input and output signals in Example 7.5.19.

As explained in section 7.4, discrete-time adaptive pole placement controllers can be
constructed by combining a PPC scheme with one of the PI algorithms presented in
Chapter 4. The implemetation of discrete-time APPC algorithms using the Adaptive
Control Toolbox is demonstrated in the following examples.

Example 7.5.20 Consider the ARMA system and the control task of Example 7.5.18.
Assume that the coefficients of the ARMA model are unknown. Let us apply indirect
APPC (difference operator approach) to perform the control task. Choosing the desired

closed-loop characteristics polynomial as A"(g ') =(1-0.1g )1 +02g "' +0.024 %),
as before, we can construct the control scheme based on the linear parametric model
yt)=0"¢(t) with 0 =[b,,b,a,,a,]' and  (t) = [ut —1),u(t —2),—y(t—1),
—y(t—2)]" as follows (see next page):



Page 7C.62 Chapter 7. Complementary Material

P(t=1)o()
Blr)+e" (1)P(t=1)o()
P(t):— P(t_1>_P<t_1)¢T(t)¢T <t>P<t_1>

B+ (1) P(t—1)¢(1)
B(t)=pB(t—1)+1-5,
0(1) =By (1).5, 1.4, (1),, ()] =Pr@(0),
Alg .0 =1+4,(g " +a,(Dg ",
Bg'\n=q"'(b,(+b,(t)g "),
A(q‘%t)i(q‘ht)+—§(q"%t)ﬁ(q‘ﬁt)::A*(q”),
L{gt)uty=—=P(q "' .t)y)+P(q 1)y, ¢ +1),

(y)—0" (t=1)6(1)), 6(0)=11,0,0,0T,

, PO)=1,

Above, the LS algorithm with start-up forgetting and parameter projection is used for
parameter estimation as before. Other algorithms could be used as well. The system and
the control scheme presented above can be simulated using the following code:

A= [1-21];

Bbar = [0.5 0.5];

n=2; m=1; d=1;

As = conv([1 0.2 0.02],[1 -0.17);

t_final = 100;
t = 1:t_final;

thetal0 = zeros(4,1);

thetaO(1l) = 1;

Pj = uparproj ('hyperplane',1,0.1,10);

P = eye(4);

ArgLS = urlsarg('startup forgetting',0.1,0.9);
x_pi = [thetal; P(:);0.1];

[nstate,x] = uvarma('init',d-1,Bbar,d); %y (t)/u(t-1)
[n_c, x_c] = udppcdo('init', [n d m]);

v(l) = uvarma('output',x,0,d-1,Bbar,A);

x = uarma('state',x,0,d-1,Bbar,A);

ym(l) = 1;

for k = 1:t_final,
ym(k+d) = 1;
phi = udppcdo('regressor',x c,[n d m]);
x_pi = udrls(x_pi, y(k), phi, 0, ArgLS, [], PJj);
theta(:,k) = x_pi(l:4);
u(k) = udppcdo('control',x_c, [y(k) ym(k+d)], [n d m],theta(:,k), 6 As);
v(k+1l) = uarma('output',x,u(k),d-1,Bbar,A);
x = uarma('state',x,u(k),d-1,Bbar,A);
x_c = udppcdo('state', x c, [u(k) y(k) ym(k+d)], [n d m]);
end;

The results are plotted in Figure 7C.34. |
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Figure 7C.34 Time histories of the input and output signals and the parameter
estimates in Example 7.5.20.

Bibliography

[1] G.C. GOODWIN AND K. S. SIN, Adaptive Filtering Prediction and Control, Prentice-
Hall, Englewood Cliffs, NJ, 1984.

[2] P. A. ToaANNOU and J. Sun, Robust Adaptive Control, Prentice-Hall, Englewood
Cliffs, NJ, 1996; also available at

http://www-rcf.usc.edu/~ioannou/Robust Adaptive Control.htm.

[3] K. J. ASTROM AND B. WITTENMARK, Adaptive Control, Addison-Wesley, Reading,
MA, 1995.



