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Online Appendix B

Preliminaries in Probability
and Analysis

It is remarkable that a science which began with
the consideration of games of chance should have

become the most important object of human knowledge . . . .
The most important questions in life are, for the most

part, only problems in probability.
—Pierre-Simon Laplace, Marquis de Laplace (1749–1827)

in Théorie Analytique des Probabilités

I cannot believe that God would choose to play dice with
the universe.

—Albert Einstein (1879–1955)

I would suggest that nobody—not even God—
would know what a phrase like playing dice

would mean in this context.
—Niels Henrik David Bohr (1885–1962), reply to Einstein

in 1949 on the occasion of Einstein’s 70th birthday,
continuing their famous discussion on the basis of

quantum mechanics

It is so easy to see far and discover when standing on
the shoulders of giants, who before us have developed

prior knowledge.
—Sir Isaac Newton (1642–1727) as quoted in [233]

There is randomness and hence uncertainty in
mathematics, just as there is in physics.

—Paul Davis

B1
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B2 Online Appendix B. Preliminaries in Probability and Analysis

This online appendix provides a practical common background for necessary applied prob-
ability concepts for continuous and discrete random variables. These concepts include
conservation of probability, expectation, variance, higher moments, and basic distributions
of interest. Also treated are applied analysis concepts of discontinuity and nonsmoothness
for deterministic processes, i.e., regular functions of time, as they affect regular calculus
concepts of Taylor approximations, asymptotics, and optimality principles. There is more
in this appendix than many readers would be expected to know, so it should at least be
browsed for familiarity and consulted as a reference.

B.1 Distributions for Continuous Random Variables
Uppercase variables, such as X = X(ω), denote random variables, which are, in general,
functions of some underlying random parameter or variable ω defined on some standard
sample space �. For notational simplicity, the dependence on the underlying or background
random variable ω ∈ � will often be suppressed. Variables in lower case letters, such as x,
denote the actual sample variables or realizations associated with the random variables and
are used as the dummy variables in integrals.

B.1.1 Probability Distribution and Density Functions

Definition B.1. The symbol 	 denotes the corresponding probability distribution such that

	(x) ≡ Prob[X ≤ x] (B.1)

in the case of a distribution on −∞ < X < +∞. Here, the notation Prob denotes the
probability function for the probability of occurrence of events on a subset as the ratio
relative to all events in the sample space. Elsewhere many other notations are used, such
as the minimal P and Pr.

If the distribution is proper, then 	(+∞) = 1, i.e., we say probability is conserved.
Also, 	(−∞) = +0 and 	 is obviously continuous as long as the probability distribution
contains no jumps in value. However, later in this book, we will consider more general
random processes, in continuous time, that are composed of continuous processes as well as
processes with jump discontinuities, possibly a countably infinite number of jumps. Thus,
in general, we have the following.

Properties B.2. Continuous Distribution Functions, �(x).

• 	 is nondecreasing, since probabilities must be nonnegative.

• 	 is continuous by properties of integrals with nonnegative integrands (assuming
there are no probability point masses, i.e., discrete components).

• 	(−∞) = +0 by properties of integrals and X > −∞.

• 	(+∞) = 1 if 	 is a proper distribution.
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B.1. Distributions for Continuous Random Variables B3

• 	(x + y) = 	(x) + Prob[x < X ≤ x + y], y > 0 by the additivity of probability
over disjoint sets, which here are (−∞, x] and (x, x + y].

Definition B.3. The symbol φ will denote a probability density such that

φ(x)dx = Prob[x < X ≤ x + dx] (B.2)

in terms of the probability for the continuous random variable X.

Properties B.4. Relation Between Distribution and Density.

• By the additivity of probability and definition of the distribution function,

φ(x)dx = Prob[x < X ≤ x + dx] = 	(x + dx)−	(x).

• Thus, for infinitesimal dx and 	 differentiable,

φ(x)dx = 	′(x)dx,

so

φ(x) = 	′(x). (B.3)

The differentiability of the distribution 	 is not considered a serious restriction here,
since differentiability in the generalized sense will be considered in Section B.12.

• The relationship between the distribution function and the density in integral form is

	(x) ≡ Prob[X ≤ x] ≡
∫ x

−∞
φ(y)dy (B.4)

in the case of a differentiable distribution on −∞ < X < +∞.

• Another more general form is

	(x) ≡ Prob[X ≤ x] ≡
∫ x

−∞
d	(y),

which is called a Stieltjes integral. In abstract formulations, the differential is written
d	(y) = 	(dy) as shorthand notation for 	((y, y + dy]) in the half-open interval
notation here.

• Sometimes it is useful to transform the random variable X to a more convenient
random variable Y , where X = ψ(Y ), for example. Consequently, for clarity of
notation, let φ(x) = φX(x) and similarly 	(x) = 	X(x), adding an extra subscript
to mark which random variable pertains to a given density or distribution function
since the argument x is only a dummy variable. Thus, the change of distribution for
a change of random variable on the interval (x1, x2] is written

	X(x2)−	X(x1) =
∫ x2

x1

φX(x)dx

=
∫ y2

y1

φY (y)dy = 	Y (y2)−	Y (y1), (B.5)
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where

φY (y) = φX(x)

∣∣∣∣dx

dy

∣∣∣∣ = φX(x)
∣∣ψ ′(y)

∣∣ (B.6)

provided ψ(y) is a differentiable monotonic function on (y1, y2), i.e., either ψ ′(y) > 0
or ψ ′(y) < 0, where, in either case, the limits of integration are given by

y1 = min[ψ−1(x1), ψ
−1(x2)]

and
y2 = max[ψ−1(x1), ψ

−1(x2)].

B.1.2 Expectations and Higher Moments

In general, there are basic definitions for averaged quantities in the case of continuous
distributions.

Definition B.5. The mean or expectation of any continuously distributed random variable
X is

µ ≡ E[X] ≡
∫ +∞

−∞
xφ(x)dx (B.7)

provided the above integral converges absolutely. The symbol E is the expectation operator.
Similarly, the expectation of a function of X, f (X), is

E[f (X)] ≡
∫ +∞

−∞
f (x)φ(x)dx (B.8)

provided the integral converges absolutely.

Properties B.6. Expectations.

• The expectation operator is a linear operator,

E[c1X1 + c2X2] = c1E[X1] + c2E[X2], (B.9)

provided the expectations exist, for random variablesXi and constants ci , for i = 1 : 2
(using MATLAB notation for the range of i).

Definition B.7. The variance or mean square deviation or second central moment for any
continuously distributed random variable X is

σ 2 ≡ Var[X] ≡ E[(X − E[X])2] =
∫ +∞

−∞
(y − µ)2φ(y)dy (B.10)

provided the integral converges absolutely. The deviation and the central moments are
defined relative to the mean µ. The square root of the variance σ is called the standard
deviation.

While the mean and the variance are the most often used moments of the distribution,
i.e., of the density, sometimes some of the higher moments are useful for further character-
izing the distribution.
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Definition B.8. The third central moment is defined here in the normalized form called the
skewness coefficient [83] for the random variable X:

η3[X] ≡ E[(X − E[X])3]/(Var[X])3/2 (B.11)

such that the distribution is negatively skewed, symmetric, or positively skewed, if η3[X] is
negative, zero, or positive, respectively (zero being the skew of the normal distribution as
discussed in Subsection B.1.4).

Definition B.9. The fourth central moment is a measure of kurtosis (peakedness) and
is defined here in the normalized form called the kurtosis coefficient [83] for the random
variable X:

η4[X] ≡ E[(X − E[X])4]/(Var[X])2 (B.12)

such that the distribution is platokurtic or leptokurtic if the coefficient of excess kurtosis
(η4[X] − 3) is negative or positive, respectively. (The value 3 is the value of η4[X] for the
normal distribution, discussed in Subsection B.1.4.)

The property of kurtosis, from the Greek word for convexity, signifies more at the
crown (as seen from the density) for a distribution with peakedness in the case of leptokurtic
and a distribution with flatness in the case of platokurtic. The kurtosis property together
with skewness is of particular interest in mathematical finance for characterizing nonnormal
properties of real market distributions.

The little book on statistical distributions of Evans, Hastings, and Peacock [83] con-
cisely lists principal formulae for skewness, kurtosis, and many other properties for 40
distributions. The book has more useful and easy-to-find information in it than other books
on distributions, including those requiring several volumes.

B.1.3 Uniform Distribution

The most fundamental continuous probability distribution is the uniform distribution.

Definition B.10. The uniform density on the finite interval [a, b] is defined as

φu(x; a, b) ≡
{

1/(b − a), x ∈ [a, b]
0, x /∈ [a, b]

}
. (B.13)

Definition B.11. The uniform distribution is defined by integrating the uniform density,

	u(x; a, b) ≡
∫ x

−∞
φu(y; a, b)dy =


0, x ≤ a

(x − a)/(b − a), a ≤ x ≤ b

1, b ≤ x

 , (B.14)

−∞ < x < +∞ , so that 	u(x; a, b) = 1 for b ≤ x < +∞, conserving total probability.

Hence, the basic moments and other properties easily follow from simple integration.
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Properties B.12. Uniform Distribution Moments.

• Conservation of probability: Eu[1] = 1.

• Mean:

µ = Eu[X] =
∫ b

a

xφu(x; a, b)dx = (b + a)/2. (B.15)

• Variance:

σ 2 = Varu[X] =
∫ b

a

(x − Eu[X])2φu(x; a, b)dx = (b − a)2/12. (B.16)

• Uniform domain correspondence to mean and variance: a = µ − √3σ and b =
µ+√3σ .

• Coefficient of skew: η3 = 0 .

• Coefficient of kurtosis: η4 = 1.8 or η4 − 3 = −1.2 is the excess value over the
normal value.

Hence, the uniform distribution is platokurtic, signifying its obvious flatness compared
to normal.

An important use of the uniform distribution is the numerical simulation of the dis-
tributions that can be transformed from the uniform distribution. The most basic random
number generator is the standard uniform random number generator. The standard uniform
random number generator is usually based on a deterministic generator called the linear
congruential generator [230, 97] that is defined as nonzero on the open interval (0, 1) in-
stead of the closed interval [0, 1] as for the theoretical distribution φu(x; 0, 1), which is
more convenient for numerical purposes and the end points do not contribute to the expec-
tation integral anyway. Most computing systems, such as MATLAB [210], Maple [1], or
Mathematica [285], and programming languages have a built-in uniform random number
generator but must be used with care considering that they use deterministic operations
such as modular arithmetic, multiplication, and division. These random number generators
are more properly called pseudo-random number generators since they generate only
approximations to random numbers, which exist only exactly in theory. Pseudo-random
numbers should be carefully tested before using them in any computation. For instance,
the MATLAB uniform generator is called rand (note that the MATLAB functions and code
fragments are typeset in typewriter style) and can simulate an approximation to a scalar,
vector, or more general array of random numbers. Figure B.1 illustrates the histograms of
a row vector with N simulations of uniform deviates for φu(x; 0, 1) using the form

x = rand(N,1)

or more generally
y = a+ (b− a) ∗ rand(N,1),

which simulates an N -vector sample uniform on (a, b) in MATLAB. Other computing
systems may use a programming loop with N iterations. The approximate distribution
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displays the bin-centered histogram function hist(x). Scaling the bin frequencies upon
normalizing by the average bin count N/nbins, where nbins is the number of bins, here
30 bins, would produce a scaled histogram more appropriate for approximating probability
density, φu(x; 0, 1), of the theoretical uniform distribution. Thus, if fi is the frequency
associated with the ith bin [xi, xi +�x) for i = 1 : nbins, in MATLAB loop notation,
of width �x, then

nbins∑
i=1

fi = N or
1

N

nbins∑
i=1

fi = 1,

the latter in normalized form.
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Figure B.1. Histograms of simulations of uniform distribution on (0, 1) using
MATLAB [210] for two different sample sizes N .

Clearly, the larger sample size simulation with N = 100,000 in Subfigure B.1(b) is a
much better approximation of the uniform approximation then the much cruder representa-
tion with N = 1000 in Subfigure B.1(a). The relative error for the sample mean is−0.24%
for N = 1000 and −0.43% for N = 100,000.

Note that the error in the sample mean did increase slightly with sample size, but
these are only single samples, and it would not be realistic to draw any general conclusions
from this case. These are just approximations to random samples, although it would be
reasonable to expect that the average over repeated samples would be lower the higher
the sample size, provided that the selected random number generator is sufficiently robust.
Computing more pairs of samples using the same sizes, N = 1000 and N = 100,000,
with different random states would demonstrate that the sample mean error would likely be
smaller, but not necessarily. The relative errors for the sample standard deviation (square
root of the sample variance) are 0.95% for N = 1000 and−0.20% for N = 100,000, which
is more reasonable.

The sample variance is obtained from the MATLAB function var(x), which is nor-
malized by number of degrees of freedom (N − 1) for the best estimate of the variance,
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correcting for conditioning due to the mean value, which in MATLAB is the function
mean(x).

For more sophisticated distribution validation tests, chi-square (χ2) or better,
Kolmogorov–Smirnoff [230] tests can be used. The two samples displayed in Figure B.1
illustrate the problem of single samples requiring the averaging of several independent repli-
cations using a different random number generator initialization, called a random seed but
now called a state in MATLAB (e.g., rand(′state′,j) sets rand in the jth state),
so the error systematically decreases with sample size. Otherwise, the user can take a larger
sample size. See Online Appendix C, Section C.1, for the MATLAB figure code.

In this appendix, we present empirical representations of distributions by histograms
derived from random number generation, rather than the purely mathematical graphs of the
probability density as portrayed in probability and statistics texts. This is to emphasize that
the distributions derived from real environments are not as ideal as the exact mathemat-
ical density functions. Another reason is to emphasize that sometimes computations are
necessary when no exact solutions are available or useful when exact solutions are too com-
plicated, beyond the expertise of the entry-level graduate student or advanced undergraduate
student.

B.1.4 Normal Distribution and Gaussian Processes

Acontinuous distribution of interest for Gaussian processes and other applications is given in
terms of the normal probability density, the derivative of the normal or Gaussian probability
distribution.

Definition B.13. The normal density with mean µ = En[X] and σ 2 = Varn[X] is defined
as

φn(x;µ, σ 2) ≡ 1√
2πσ 2

exp

(
− (x − µ)2

2σ 2

)
, −∞ < x < +∞ , σ > 0, (B.17)

where φn denotes the normal density function with argument x and parameters {µ, σ 2}
following the semicolon. Here, X is called the normal random variate.

Definition B.14. The normal distribution is defined here through the density as

	n(x;µ, σ 2) ≡
∫ x

−∞
φn(y;µ, σ 2)dy , −∞ < x < +∞, (B.18)

so that 	n(+∞;µ, σ 2) = 1, conserving total probability.

Remark B.15. The normal distribution can be computed using MATLAB, Maple, or Math-
ematica computing systems, but the common special function that can be used, without
resorting to special packages, is the error function complement,

erfc(x) = 1− erf (x) = 2√
π

∫ ∞

x

e−t2
dt, (B.19)
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B.1. Distributions for Continuous Random Variables B9

so that the normal distribution can be computed from these two identities

	n(x;µ, σ 2) = 1

2
erfc

(
µ− x√

2σ

)
(B.20)

= 1− 1

2
erfc

(
x − µ√

2σ

)
. (B.21)

Properties B.16. Normal Distribution Skew and Kurtosis.

• The normal distribution is skewless, since the coefficient of skew is
η3[X] = 0.

• The normal distribution has no excess kurtosis, since the coefficient of excess kurtosis
is (η4[X] − 3) = 0, where 3 is the coefficient of kurtosis of the normal distribution.

As with the uniform distribution, the normal distribution is a theoretical idealization
that is very useful in the analysis of stochastic problems. However, for practical computa-
tions, numerical simulations are usually necessary. Since the normal density function is an
exponential of a quadratic, direct transformation from a uniform random generator is not pos-
sible. However, the usual normal random number generating algorithm, called Box–Muller
[230, 97], cleverly applies the uniform random generator to a polar coordinate version of a
two-dimensional normal distribution, reminiscent of the classic technique of converting a
normal probability integral on the infinite domain from one-dimension to two dimensions
and polar coordinates to get exact integral values. In some computing systems there is a
special built-in function for a normal random generator. In MATLAB [210] the function is
called randn, also having vector or array capabilities in the vector form x = randn(N,1)

for a N−vector sample. (More generally, y = mu+ sigma ∗ randn(N,1) would sim-
ulate the density φn(y;mu,sigma2), where mu is the specified mean and sigma is the
specified standard deviation.) The simulated normal density is illustrated by the histogram in
Figure B.2 using two sample sizes, N = 1000 and 100,000. Clearly, the larger sample size
in Subfigure B.2(b) gives a better qualitative representation of the theoretical bell-shaped
curve of the normal density φn(x; 0, 1). The percent relative errors in the mean and standard
deviation are, respectively,−1.53% and−0.35% for N = 1000, while the errors are 1.31%
and −0.083% for the N = 100,000 sample size. See Online Appendix C, Section C.2, for
the MATLAB figure code.

B.1.5 Simple Gaussian Processes

For later use, we will let W(t) denote what is called a standard, mean zero Wn zero Wiener
process with distribution

	W(t)(x) = 	n(x; 0, t), −∞ < x < +∞ , t > 0, (B.22)

with corresponding probability density

φW(t)(x) = φn(x; 0, t), −∞ < x < +∞ , t > 0. (B.23)
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Figure B.2. Histograms of simulations of the standard normal distribution with
mean 0 and variance 1 using MATLAB [210] with 50 bins for two sample sizes N . The
histogram for the large sample size of N = 105 in (b) exhibits a better approximation to
the theoretical normal density φn(x; 0, 1).

A simple Gaussian process with linear mean growth in time,

X = G(t) = µt + σW(t), (B.24)

has mean E[X] = µt and variance Var[X] = σ 2t , so that the distribution of this process is

	G(t)(x) = 	n(x;µt, σ 2t) = 1√
2πσ 2t

∫ x

−∞
e
− (y−µt)2

2σ2 t dy (B.25)

on −∞ < x < +∞, t > 0. The standard Wiener and Gaussian processes are also called
diffusion processes, so they form models of the diffusion part of the jump-diffusion processes
that are the main topic in this book. To see the connection between the stochastic Gaussian
process and the deterministic diffusion process, let

u(x, t) = 	G(t)(x)

and take partial derivatives of u(x, t) with respect to t and x to derive the diffusion equation
with drift (−µ) and diffusion coefficient (σ 2/2),

ut (x, t) = −µux(x, t)+ σ 2

2 uxx(x, t), −∞ < x < +∞ , t > 0, (B.26)

where the subscripts on ut , ux , and uxx denote partial derivatives and the equation is called
a partial differential equation (PDE).
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Remarks B.17.

• Here we use the term Gaussian process as it is used in applied mathematics, science,
and engineering, i.e., for processes that are normally distributed. (For a more abstract
view of Gaussian processes, see Mikosch [209].)

• There will be much more on the Wiener and Gaussian processes later, since they
form the basic process for building the diffusion component of the jump-diffusion
processes.

B.1.6 Lognormal Distribution

Often in applications, such as in many linear financial models, the exponential of a nor-
mally distributed random variable arises and the distribution of this exponential is called a
lognormal distribution since its logarithm produces the normally distributed exponent.

Theorem B.18. Let

Xln = exp (µ+ σXn) (B.27)

be a lognormal variate and let Xn be a standard normal variate, i.e., with zero mean and
unit variance, Then lognormal density with mean µln = E[Xln] and (σln)

2 = Var[Xln] can
be written in terms of the normal density φn (B.17) such that

φln

(
x;µln, (σln)

2
) ≡ x−1φn

(
ln(x);µ, σ 2

)
0 < x < +∞ , σ > 0, (B.28)

where φln denotes the lognormal density function with argument x and parameters
{µn, (σ

2)n} = {µ, σ 2} follow the semicolon. If x = 0, then define φln as the limiting
case:

φln

(
0;µln, (σln)

2
) ≡ φln

(
0+;µln, (σln)

2
) = 0. (B.29)

Proof. Let the realization variable satisfy x > 0, recall that σ > 0, and that the natural
logarithm is an increasing function. Consider the corresponding lognormal distribution
definition, subsequently manipulated into the normal distribution:

	ln

(
x;µln, (σln)

2
) = Prob [Xln ≤ x] (B.30)

= Prob [exp (µ+ σXn) ≤ x] (B.31)

= Prob [Xn ≤ (ln(x)− µ)/σ ] (B.32)

= 	n((ln(x)− µ)/σ ; 0, 1) (B.33)

= 	n(ln(x);µ, σ 2). (B.34)

The last step follows a normal distribution or density identity that allows transforming from
the standard normal to nonstandard normal with mean µ and variance σ 2 (see Exercise 9
on p. B70). Upon taking the derivatives of the first and the last of this chain of equations
and using the chain rule to handle the logarithmic argument of the normal distribution, the
relationship between the densities is

φln

(
x;µln, (σln)

2
) = (	ln)

′ (x;µln, (σln)
2
)

= x−1(	n)
′ (ln(x);µ, σ 2

)
= x−1φn

(
ln(x);µ, σ 2

)
.
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Note that as x → 0+, then

x−1 exp
(−(ln(x)− µ)2/

(
2σ 2

))→ 0+,

since the exponential approaches zero much faster than the reciprocal of x approaches
infinity. Thus, since the singularity at zero is removable, we define the exception value of
the lognormal density at zero to be

φln

(
0;µln, (σln)

2
) ≡ φln

(
0+;µln, (σln)

2
) = 0.

In the above analytical manipulation of distribution probabilities, the general princi-
ples are embodied in the following lemma.

Lemma B.19. General Probability Inversion.
Let X and Y be two random variables with continuous densities φX(x) and φY (y), re-
spectively. Further, let the dependence between them be given by X = g(Y ), where
g(y) is continuously differentiable and increasing so that an inverse function f exists,
i.e., y = f (x) = g−1(x). Then the corresponding distributions are related by

	X(x) = Prob[X ≤ x] = Prob[g(Y ) ≤ x]
= Prob[Y ≤ f (x)] = 	Y (f (x)) (B.35)

and the densities are related by

φX(x) = f ′(x)φY (f (x)). (B.36)

If, instead, g is strictly decreasing, then

	X(x) = Prob[Y ≥ f (x)] = 1−	Y (f (x)) (B.37)

and

φX(x) = −f ′(x)φY (f (x)). (B.38)

Proof. Since f is the inverse function of g, then with x = g(y) and y = f (x), g(f (x)) = x

and g′(y)f ′(x) = 1, using the chain rule and the derivatives are reciprocals of each other.
Further, the increasing property of g means f is also increasing, the signs of the derivatives
must be the same. So if x1 ≤ x2, then f (x1) ≤ f (x2), and the direction of an inequality is
preserved upon application of f . In the g decreasing case, the direction is reversed. Thus,
(B.35) has been demonstrated in the increasing case. The decreasing case is similar, except
for the change in inequality direction and a minor point in converting from probability to
distribution function. The probability complement equivalent of Prob[Y ≥ f (x)] would
strictly be 1 − Prob[Y < f (x)], but since the densities are continuous the probabilities
assigned to an isolated point are zero, i.e., Prob[Y < f (x)] = Prob[Y ≤ f (x)].

The densities follow upon differentiating by the chain rule

	′
X(x) = φX(x) = f ′(x)	′

Y (f (x)) = f ′(x)φY (f (x))
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in the increasing case, and the decreasing case is similar except for the minus sign in the
density (B.38), which also preserves the nonnegativity of the density, since −f ′(x) > 0
in the negative case. The factor ±f ′(x) > 0 is the density conversion factor in either
case.

Properties B.20. Lognormal Distribution Moments.

• Mean:
µln = Eln[X] = eµ+σ 2/2.

• Variance:
σln = Varln[X] = (µln)

2
(
eσ 2 − 1

)
.

• Inverse, normal from lognormal:

σ 2 = ln
(
1+ σln/ (µln)

2
)

and

µ = ln (µln)− 1

2
σ 2.

• Coefficient of skewness:

η
(ln)
3 [X] =

(
eσ 2 + 2

)√
eσ 2 − 1.

• Coefficient of kurtosis:

η
(ln)
4 [X] =

(
e4σ 2 + 2e3σ 2 + 3e2σ 2 − 3

)
.

Remark B.21. The mean formula is justified using the logarithmic transformation, y =
(ln(x) − µ)/σ , from lognormal back to normal along with completing the square method
in the exponent,

Eln[X] =
∫ ∞

0

exp(−(ln(x)− µ)2/(2σ 2))

x
√

2πσ 2
xdx

= 1√
2π

eµ

∫ +∞

−∞
e−y2/2eσydy

= 1√
2π

eµ+σ 2/2
∫ +∞

−∞
e−(y−σ 2)2/2dy = eµ+σ 2/2.

Then the rest of the moments rely on the same techniques.

The simulation of the lognormal distribution relies on the fact (B.27) that the lognor-
mal variate is the exponential of a normal variate, i.e., Xln = exp(µ + σXn). Thus the
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MATLAB approximation will be the set of simulations

y = mu*ones(N,1) + sigma*randn(N,1);
x = exp(y);

where again randn(N,1) is MATLAB’s normal random generator for a sample size of N

while the ones(N,1) function produces an N -vector of ones preserving the vector form
when adding the constant mu, with similar constructs in Maple and Mathematica. Equation
(B.28) for the density implies that the proper lognormal density will be obtained in theory.

The MATLAB graphical histogram output for two sample sizes, N = 1000 and
100,000, both sorted into nbins= 150, is given in Figure B.3. The selected normal
parameters are µn = µ = mu = 0.0 and σn = σ = sigma = 0.5, corresponding to
lognormal parameters µln � 1.133 and σln � 0.3646. The percent relative errors in the
lognormal mean and standard deviation are respectively −0.56% and −0.60% for N =
1000, while the relative errors are −0.085% and −0.30% for the for N = 100,000 sample
size. Again, the larger sample size Figure B.3(b) gives a better qualitative representation of
the theoretical shape of the lognormal density φln(x;µln, σln). Both subfigures confirm that
the density goes to zero as x → 0+. See Online Appendix C, Section C.3, for the MATLAB
figure code.
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Figure B.3. Histograms of simulations of the lognormal distribution with mean
µn = 0 and variance σn = 0.5 using MATLAB [210] normal distribution simulations, x
= exp(mu*ones(N,1)+ sigma*randn(N,1)) with 150 bins for two sample sizes.
The histogram for the large sample size of N = 105 in (b) exhibits a better approximation
to the theoretical lognormal density φn(x; 0, 1) than the one in (a).

B.1.7 Exponential Distribution

The continuous exponential density is closely related to the interarrival time of a Poisson
process (discussed in Chapter 1).
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Definition B.22. The exponential density is given for some exponential random variate τe

by

φe(t;µ) ≡ 1

µ
e−t/µ , 0 ≤ t < +∞ , µ > 0, (B.39)

with mean µ, so the exponential distribution is called a one-parameter distribution. The
explicit form of the exponential distribution is

	e(t;µ) = Prob[τe ≤ t] =
{

1− e−t/µ , t ≥ 0

0 , t < 0

}
. (B.40)

Properties B.23. Exponential Distribution Moments.

• Conservation of probability: Ee[1] = 1.

• Mean: µ = Ee[X] by selection of the exponential parameter.

• Variance: σ 2 = Vare[X] = µ2 so the standard deviation is also µ.

• Coefficient of skew: η3 = 2 , positive relative to the mean on [0,∞).

• Coefficient of kurtosis: η4 = 9 or η4 − 3 = 6 is the excess value over the normal
value.

Hence, the exponential distribution defines a one-parameter family of distributions
with the same mean and standard deviation but also positively skewed by virtue of the
semi-infinite domain and leptokurtic with clear pointedness.

Since the exponential distribution has such a simple form it can easily be transformed
into the uniform distribution for use in practical simulations. Using the fundamental law
of transformation of probabilities [230] or as the inverse transformation method [97]
for transforming the exponential density φe(xe;µ) to the standard (0, 1) uniform density
φu(xu; 0, 1),

φu (xu; 0, 1) = φe (xe;µ)

∣∣∣∣ dxe

dxu

∣∣∣∣ . (B.41)

The Jacobian sign negative, dxe/dxu < 0 is chosen because it leads to a faster computational
form by eliminating a constant of integration, i.e.,

xe = −µ ln (xu) , (B.42)

which when inverted is
xu = exp (−xe/µ) . (B.43)

A prime prerequisite for random simulations is that the distribution is covered in the trans-
formation, but the order of the covering does not matter so we have

	e(xe;µ) = Prob [0 ≤ Xe ≤ xe]

= Prob [exp (−xe/µ) ≤ Xu ≤ 1]

= 1−	u (exp (−xe/µ) ; 0, 1) ,
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which works although the uniform distribution here is covered from right to left starting from
1 while the exponential distribution is covered from left to right starting from xe = 0. The
interested reader can check that the general expectation Ee[f (Xe)] = Eu[f (−µ ln(Xu))] is
equivalent for any integrable function f (see Exercise 12).

Hence, x = −mu ∗ log(rand(N,1)) leads to a MATLAB exponential random gen-
erator producing N -vector output, where log is the MATLAB natural logarithm func-
tion and mu is the input for the mean. The MATLAB graphical output for two sample
sizes, N = 1000 and 100,000, is given in Subfigures B.4(a) and B.4(b), respectively. The
percent relative errors in the mean and standard deviation are, respectively, 7.94% and
−0.71% for N = 1000, while the errors are 3.81% and −0.54% for the N = 100,000
sample size. See Online Appendix C, Section C.4, for the MATLAB figure code called
exponential103fig1.m.
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Figure B.4. Histograms of simulations of the standard exponential distribution,
with mean taken to be mu = 1, using MATLAB’s hist function [210] with 50 bins for two
sample sizes N , generated by x = −mu ∗ log(rand(N,1)) in MATLAB. The histogram
for the large sample size of N = 105 in (b) exhibits a better approximation to the standard
theoretical exponential density φe(x; 1).

Remarks B.24.

• Alternatively, a more direct exponential to uniform transformation could have been
selected,

x̂u = 1− exp
(−x̂e/µ

)
with inverse

x̂e = −µ ln
(
1− x̂u

)
, (B.44)

but that would not be as numerically efficient for large sample sizes N as (B.42)
which is more often used, since (B.42) requires one less floating point operation,
not needing to subtract the uniform random sample from 1 per sample in (B.44).
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Typically random sample sizes are huge, so good representations of the distribution
can be obtained.

• The probabilistic view of the difference between the two exponential to uniform trans-
formations follows from Lemma B.19 on general probability inversion. In the direct
case, ĝ(y) = −µ ln(1−y) and f̂ (x) = 1−exp(−x/µ), so g′(y) = +µ/(1−y) > 0
for 0 < y < 1. Thus,

	X̂e
(x) = 	X̂u

(1− exp(−x/µ))

by (B.35) and

φX̂e
(x) = 1

µ
exp(−x/µ)φX̂u

(1− exp(−x/µ))

by (B.36), which implies φX̂u
(1− exp(−x/µ)) = 1 since its coefficient is φX̂e

(x). In
the more useful case, g(y) = −µ ln(y) and f (x) = exp(−x/µ), so g′(y) < 0 and

φXe
(x) = + 1

µ
exp(−x/µ)φXu

(exp(−x/µ))

by (B.38) and again φXu
(exp(−x/µ)) = 1.

B.2 Distributions of Discrete Random Variables
In general, averaged quantities for discrete distributions involve sums rather than integrals
used in the continuous distributions. (Note: The use of the term distribution is different for
discrete and continuous cases.)

Definition B.25. Let the discrete distribution be

πk = Prob[X = xk] (B.45)

for some countable set of values X = {xk|k = 0 : m}, where m could be infinite. (The 0 : m
is MATLAB loop notation.)

Definition B.26. Colon or Loop Notation.
For compactness, the range of a discrete set will be in the MATLAB colon or loop notation
[210, 143] with k = m1 : m2 denoting that the index k ranges from integers m1 to m2 in
steps of unity (1), meaning the same as the loosely defined k = m1, m1+1, . . . , m2−1, m2,
assuming m1 < m2. In the case of nonunit steps �m, then k = m1 : �m : m2 is used
instead of k = m1, m1+�m, . . . , m2−�m, m2, assuming the range m2−m1 is a positive
integer multiple of �m.

Properties B.27. Discrete Distributions πk .

• Nonnegativity: πk ≥ 0.

• Conservation of probability:

m∑
k=0

πk = 1. (B.46)
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The basic definitions in the discrete distribution case for averaged quantities are listed
as follows.

Definitions B.28.

• The mean or expectation of the discrete set X = {xk|k = 0 : m} is

µ = E[X ] ≡
m∑

k=0

xkπk (B.47)

for any discretely distributed random variable provided the sum converges absolutely.

• Similarly, the expectation of a function f (X) of X is

E[f (X)] ≡
m∑

k=0

f (xk)πk (B.48)

provided the sum converges absolutely.

Definition B.29. The variance or mean square deviation of the discrete set X is

Var[X ] ≡ E[(X − E[X ])2] =
m∑

k=0

(xk − µ)2πk (B.49)

for any discretely distributed random variable provided the sum converges absolutely, where
the set difference (X − µ) ≡ {xk − µ|k = 0 : m} for fixed µ.

B.2.1 Poisson Distribution and Poisson Process

Another important distribution is a discrete distribution and is called the Poisson distribu-
tion. It is useful for modeling jumps, especially for the jump component of jump-diffusions.

Definition B.30. The Poisson distribution with Poisson variate ν and single Poisson
parameter � is given by the probabilities

pk(�) ≡ Prob[ν = k] = e−� (�)k

k! (B.50)

for k = 0, 1, 2, . . . and � ≥ 0, expressed as a simple Poisson distribution with continuous
parameter � which serves as both mean,

E[ν] = �, (B.51)

and variance,

Var[ν] = �, (B.52)

of this one-parameter discrete distribution.
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The mean and variance can be conveniently computed from the properties of the
exponential series,

∞∑
k=0

uk

k! = eu = exp(u), −∞ < u < +∞, (B.53)

together with its derivatives, such as its first derivative form

∞∑
k=0

k
uk

k! = u
d

du
eu,

which can be used to compute the mean property from

E[ν] = e−�

∞∑
k=0

k
(�)k

k!
to derive (B.51), and its second derivative form

∞∑
k=0

k2 uk

k! =
(

u
d

du

)2

eu,

which can be used with the mean to compute the variance property from

Var[ν] = e−�

∞∑
k=0

(k −�)2 (�)k

k!
to derive (B.52) upon expanding the square in the sum.

From (B.50), it is simple to deduce that pk(0+) = δk,0, where δk,0 is defined as follows.

Definition B.31.

δi,j =
{

1 if j = i

0 if j 
= i

}
(B.54)

is the Kronecker delta or discrete delta function.

Figure B.5 the Poisson distribution versus the Poisson counting variable k for four
values of the Poisson parameter, � = 0.2, 1.0, 2.0 and 5.0. See Online Appendix C,
Section C.5, for the MATLAB figure code. For the smaller parameter value, � = 0.2,
the distribution resembles a discretized version of the exponential distribution, while as �

increases to 2.0 the distribution is beginning to resemble the normal distribution around the
peak. For large values of the parameter � it can be shown (see Feller [84]) that the Poisson
distribution has a normal approximation.

For later use, let P(t) denote the simple Poisson process with linear time-dependent
parameter � = λt as a jump process with unit jumps, hence also characterized as a counting
process. It can be shown (see Çinlar [56], for instance) that the P(t) discrete distribution is

pk(λt) ≡ Prob[P(t) = k] = e−λt (λt)k

k! . (B.55)
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Figure B.5. Poisson distributions with respect to the Poisson counter variable k

for parameter values � = 0.2, 1.0, 2.0, and 5.0. These represent discrete distributions, but
discrete values are connected by dashed, dotted, and dash-dotted lines only to help visualize
the distribution form for each parameter value.

If the random variable Tk is the time of the kth Poisson unit jump for k = 0 : +∞, then
time between jumps or interarrival time can be shown to be distributed exponentially,

Prob[Tk+1 − Tk ≤ t | Tk] = 1− Prob[Tk+1 − Tk > t | Tk]
= 1− Prob[P(Tk + t)− P(Tk) = 0 | Tk]
= 1− Prob[P(t) = 0]
= 1− e−λt = 	e(t; 1/λ), (B.56)

in the first step using conservation of probability to write the probability in terms of one minus
the complement, in the second step using the fact that the probability that the interarrival
time �Tk = Tk+1 − Tk > t is the same as the probability that Poisson increment P(Tk +
t) − P(Tk) = 0, in the third step using the stationarity property that P(s + t) − P(s) and
P(t) have the same distribution (to be discussed later), and finally using (B.55) with k = 0.

Remark B.32. The Poisson process is presented in the main chapters of the text, since it
serves as the basic process for building the jump component of the jump-diffusion processes.

B.3 Joint and Conditional Distribution Definitions
In many parts of this book, several properties of joint and conditional distributions will be
useful and are summarized for two random variables here. These random variables can be
combinations of discrete and continuous random variables, e.g., discrete for jump variables
or continuous for diffusion variables. The definition forms are the forms that are useful
in this text, but they are not necessarily the most general definitions. Many can be easily
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generalized from a couple to multiple random variables. For more general information see
the long-standard reference of Feller [85] or the works of Karlin and Taylor [162, 265].

Definitions B.33. Jointly Distributed Random Variables.

• The joint probabilities or joint distribution functions of two random variables X and
Y depend on whether the random variables are discrete or continuous, leading to
three cases:

1. Two jointly distributed discrete random variables, X and Y , have the joint
probability or joint distribution function

πX,Y (xi, yj ) ≡ Prob[X = xi, Y = yj ] (B.57)

for specified discrete values xi and yj for integers i and j (in general, the
discrete sets are assumed to be countable or denumerable) and such values will
be assumed with the qualifications given here.

2. Two jointly distributed continuous random variables, X and Y , have the joint
probability or joint distribution function

	X,Y (x, y) ≡ Prob[X ≤ x, Y ≤ y]. (B.58)

3. Two jointly distributed mixed continuous and discrete random variables, X

and Y , have the hybrid joint probability or joint distribution function

	X,Y (x, yj ) ≡ Prob[X ≤ x, Y = yj ] (B.59)

for some discrete value yj .

• The joint densities, if they exist, of two jointly distributed random variables X and
Y , are defined as follows.

1. Two jointly distributed discrete random variables, X and Y , do not have a
joint density in the usual way, but for an applied formulation, the generalized
functions can be used. (See Section B.12 on p. B52.)

2. Two jointly distributed continuous random variables, X and Y , have the joint
density if the partial derivatives exist,

φX,Y (x, y) = ∂2	X,Y

∂x∂y
(x, y), (B.60)

and then can be used to calculate the joint distribution using the integral formula

	X,Y (x, y) =
∫ x

−∞
dξ

∫ y

−∞
dη φX,Y (ξ, η). (B.61)
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3. Two jointly distributed mixed continuous and discrete random variables, X

and Y , have the joint density if only the x-partial derivative exists,

φX,Y (x, yj ) = ∂	X,Y

∂x
(x, yj ). (B.62)

This is a hybrid density distribution rather than a strict joint density, but then
it can be used to calculate the joint distribution,

	X,Y (x, yj ) =
∫ x

−∞
dξ φX,Y (ξ, yj ), (B.63)

for some discrete value yj .

• The marginal distributions in one of two random variables X and Y are defined by
summing or integrating over the other random variable:

1. Two jointly distributed discrete random variables, X and Y , have the marginal
distributions

πX(xi) =
∞∑

j=1

πX,Y (xi, yj ), (B.64a)

πY (yj ) =
∞∑
i=1

πX,Y (xi, yj ). (B.64b)

2. Two jointly distributed continuous random variables, X and Y , have the
marginal distributions

	X(x) = lim
y→+∞	X,Y (x, y) =

∫ x

−∞
dξ

∫ +∞

−∞
dη φX,Y (ξ, η), (B.65a)

	Y (y) = lim
x→+∞	X,Y (x, y) =

∫ y

−∞
dη

∫ +∞

−∞
dξ φX,Y (ξ, η), (B.65b)

provided the limits exist.

3. Two jointly distributed mixed continuous and discrete random variables, X

and Y , have the marginal distributions

	X(x) =
∫ x

−∞
dξ

∞∑
j=1

φX,Y (ξ, yj ), (B.66a)

πY (yj ) =
∫ +∞

−∞
dξ φX,Y (ξ, yj ), (B.66b)

provided the limit exists.

• The marginal densities of two random variables, X and Y , are defined as
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1. Two jointly distributed discrete random variables, X and Y , do not have
marginal densities in the usual way, but for an applied formulation, the gener-
alized functions can be used. (See Section B.12 on p. B52.)

2. Two jointly distributed continuous random variables, X and Y , have the
marginal densities

φX(x) =
∫ +∞

−∞
dη φX,Y (x, η), (B.67a)

φY (y) =
∫ +∞

−∞
dξ φX,Y (ξ, y). (B.67b)

3. Two jointly distributed mixed continuous and discrete random variables, X

and Y , have the marginal density for the continuous random variable X,

φX(x) =
∞∑

j=1

φX,Y (x, yj ), (B.68)

and the marginal distribution πY (yj ) is given in (B.66b).

• The expectation function f (X, Y ) of joint random variables, X and Y , is defined as
follows:

1. Two jointly distributed discrete random variables, X and Y , have the joint
expectation of f (X, Y ), providing the sums or integrals exist:

EX,Y [f (X, Y )] =
+∞∑
i=1

+∞∑
j=1

f (xi, yj )πX,Y (xi, yj ). (B.69)

2. Two jointly distributed continuous random variables, X and Y , have the joint
expectation of f (X, Y )

EX,Y [f (X, Y )] =
∫ +∞

−∞
dξ

∫ +∞

−∞
dη f (ξ, η)φX,Y (ξ, η). (B.70)

3. Two jointly distributed mixed continuous and discrete random variables, X

and Y , have the joint expectation

EX,Y [f (X, Y )] =
∫ +∞

−∞
dη

∞∑
j=1

f (ξ, yj )φX,Y (ξ, yj ), (B.71)

where φX,Y (x, yj ) is the hybrid density distribution given by (B.62).

• The covariance of two jointly distributed random variables, X and Y , for all three
cases, is defined as

Cov[X, Y ] ≡ EX,Y [(X − EX[X])(Y − EY [Y ])], (B.72)

provided the expectations exist. Hence,

Cov[X, Y ] = EX,Y [X · Y ] − EX[X] · EY [Y ]. (B.73)
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• The variance of a sum or difference of two random variables, X and Y ,

Var[X ± Y ] = VarX[X] ± 2Cov[X, Y ] + VarY [Y ], (B.74)

by writing the variance of the sum-difference as expectations and collecting terms into
a covariance using (B.72) and using the definition of variance twice for the remaining
terms, i.e.,

Var[X ± Y ] = E[(X − E[X] ± (Y − E[Y ]))2]
= VarX[X] ± 2Cov[X, Y ] + VarY [Y ].

Remarks B.34.

• The subscript on the expectation symbol is often omitted but can be used in multivariate
expectation to precisely specify which variable or variables are the arguments of the
expectation operator and to avoid confusion.

• The integral notations are equivalent:∫ x2

x1

dx

∫ y2

y1

dyf (x, y) =
∫ x2

x1

∫ y2

y1

f (x, y)dydx;

the former, having the element of integration following the integration sign, makes
it easy to see the order of integration and which limits of integration go with what
elements of integration.

Definitions B.35. Independently Distributed Random Variables.

• The joint distribution of two independent random variables, X and Y , is the product
of the marginal distributions:

1. Two discrete random variables, X and Y , are independent if their joint distri-
bution is

πX,Y (xi, yj ) = πX(xi) · πY (yj ). (B.75)

2. Two continuous random variables, X and Y , are independent if their joint
distribution is

	X,Y (x, y) = 	X(x) ·	Y (y). (B.76)

3. Two mixed continuous discrete random variables, X and Y , are independent
if their joint distribution is

	X,Y (x, yj ) = 	X(x) · πY (yj ). (B.77)

• The joint density of two independent random variables, X and Y , is the product of
the marginal densities:
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1. Two discrete random variables, X and Y , do not have a joint density in the
usual way.

2. Two continuous random variables, X and Y , are independent if their joint
distribution is

φX,Y (x, y) = φX(x) · φY (y). (B.78)

3. Two mixed continuous and discrete random variables, X and Y , are indepen-
dent if their hybrid density distribution is

φX,Y (x, yj ) = φX(x) · πY (yj ), (B.79)

assuming densities exist where relevant.

• The joint expectation of the productf (X)·g(Y ) in two independent random variables,
X and Y , is the product of the expectations,

EX,Y [f (X) · g(Y )] = EX[f (X)] · EY [g(Y )], (B.80)

covering all three cases.

• The covariance of two independent random variables, X and Y , is zero,

Cov[X, Y ] ≡ E[(X − E[X])(Y − E[Y ])] = 0, (B.81)

since by the separability of the expectation in (B.80),

Cov[X, Y ] = EX[(X − E[X])] · EY [(Y − E[Y ])] = 0 · 0 = 0.

Note that the converse is not true. If Cov[X, Y ] = 0, then the random variables are
not necessarily independent.

B.3.1 Conditional Distributions and Expectations

Definitions B.36.

• The conditional probability and conditional distribution of the random variable X,
conditioned on the random variable Y , are defined as follows:

1. If X and Y are both discrete random variables,

πX|Y (xi |yj ) ≡ Prob[X = xi | Y = yj ] = Prob[X = xi, Y = yj ]
Prob[Y = yj ] , (B.82)

provided the marginal distribution πY (yj ) = Prob[Y = yj ] 
= 0 from (B.64).

2. If X and Y are both continuous random variables,

	X|Y (x|y) ≡ Prob[X ≤ x | Y = y] =
∫ x

−∞ dξφX,Y (ξ, y)

φY (y)
, (B.83)

provided marginal density φY (y) 
= 0 from (B.67). See Karlin and Taylor [162].
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Remarks B.37.

• Since we can write

Prob[Y ∈ [y, y + dy]] dy= φY (y)dy,

i.e., in precision-dy, the formula (B.83) can be rewritten in probabilities,

Prob[X ≤ x | Y = y] = Prob[X ≤ x, Y ∈ [y, y + dy]]
Prob[Y ∈ [y, y + dy]] ,

provided Prob[Y ∈ [y, y + dy]] > 0.

• Regarding (B.83), note that if Y is a continuous random variable, then
Prob[Y = y] = 0 since a single point has no probability mass with

lim
δ→0

∫ y+δ

y

φY (η)dη = 0.

• The reader can confirm the consistency of these conditional probability
formulas when X and Y are independent random variables.

3. If X is a continuous and Y is a discrete random variable,

	X|Y (x|yj ) ≡ Prob[X ≤ x | Y = yj ] = Prob[X ≤ x, Y = yj ]
Prob[Y = yj ] (B.84)

=
∫ x

−∞ dξφX,Y (ξ, yj )

Prob[Y = yj ] ,

provided marginal distribution πY (yj ) = Prob[Y = yj ] 
= 0 from (B.66b),
where φX,Y (ξ, yj ) is the hybrid density distribution in (B.62).

• Iterated probability uses the definitions of conditional probability in reverse to eval-
uate joint probability for the random variables X and Y :

1. If X and Y are both discrete random variables,

Prob[X = xi, Y = yj ] = Prob[X = xi | Y = yj ] · Prob[Y = yj ], (B.85)

provided the conditional distribution Prob[X = xi | Y = yj ] exists.

2. If X and Y are both continuous random variables,

Prob[X ≤ x, Y ∈ [y, y + dy]] =
∫ x

−∞
dξφX,Y (ξ, y)dy

= Prob[X ≤ x | Y = y] · φY (y)dy, (B.86)

provided the conditional distribution Prob[X ≤ x |Y = y] exists, but if not then
φY (y) = 0 should cover the case.
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3. If X is a continuous and Y is a discrete random variable,

Prob[X ≤ x, Y = yj ] = Prob[X ≤ x | Y = yj ] · Prob[Y = yj ], (B.87)

provided marginal distribution πY (yj ) = Prob[Y = yj ] 
= 0 from (B.66b),
where φX,Y (ξ, yj ) is the hybrid density distribution in (B.62).

Remark B.38. These forms are convenient for decomposing joint probability calcu-
lations into simpler parts.

• The conditional density is

φX|Y (x|y) = ∂	X|Y (x|y)

∂x
(B.88)

provided X is a continuous random variable and Y is either continuous or discrete.

• The conditional expectation of X given Y = y is defined as

EX[X|Y = y] =
∫ +∞

−∞
xφX|Y (x|y)dx (B.89)

provided X is a continuous random variable and Y is either continuous or discrete;
else

EX[X|Y = yj ] =
∞∑
i=1

xiπX|Y (xi |yj ) (B.90)

when both X and Y are discrete random variables with a similar form for EX[X|Y =
y] if X is discrete but Y is continuous.

• Similarly, the expectation for a function f (X, Y ) given Y = y is

EX[f (X, Y )|Y = y] =
∫ +∞

−∞
f (x, y)φX|Y (x|y)dx

provided X is a continuous random variable and Y is either continuous or discrete;
else

EX[f (X, Y )|Y = yj ] =
∞∑
i=1

f (xi, yj )πX|Y (xi |yj )

when both X and Y are discrete random variables.

Properties B.39. Conditional Expectations.

• E[f (X)|X] = f (X) for some function f .

• EY [EX|Y [X|Y ]] = EX,Y [X], but EY [EX|Y [X|Y ]] = EX[X] if X and Y are independent
random variables.
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• E[c1X1+ c2X2|Y ] = c1E[X1|Y ] + c2E[X2|Y ] provided the conditional expectations
exist for random variables Y and Xi , and constants ci , for i = 1 : 2, i.e., the
conditional expectation is a linear operation.

• If X and Y are random variables, then the iterated expectation is

EX,Y [f (X, Y )] = EY [EX[f (X, Y )|Y ]] (B.91)

provided the expectations exist, i.e., that f (x, y) is sufficiently integrable with respect
to any density. This is also a general form of the law of total probability given in the
next section.

Proof. In the case thatX andY are both continuous random variables, the justification
is built upon the basic definition of the conditional distribution in (B.83) which leads
to the conditional density according to (B.88) upon differentiation,

φX|Y (x|y) = φX,Y (x, y)/φY (y),

assuming φY (y) > 0. Further, φY (y) > 0 will be assumed on−R ≤ y ≤ R for some
R > 0, since φY (y) → 0+ as y → +∞ for conservation of probability through
integrability at infinity. For convenience, the limit as R → +∞ will be ignored in
the following formally justifying chain of equations:

EX,Y [f (X, Y )] =
∫ +∞

−∞
dy

∫ +∞

−∞
dxφX,Y (x, y)f (x, y)

=
∫ +∞

−∞
dy

∫ +∞

−∞
dx
(
φX|Y (x|y)φY (y)

)
f (x, y)

=
∫ +∞

−∞
dyφY (y)

∫ +∞

−∞
dxφX|Y (x|y)f (x, y)

= EY [EX[f (X, Y )|Y ]] .

The other random variable cases are similar with sums where discrete random vari-
ables are concerned.

• If X and Y are independent, then E[X|Y ] = E[X] and in general

E[f (X)g(Y )|Y ] = E[f (X)]g(Y ),

provided the expectations exist.

See Mikosch [209] for more conditional expectation properties in a more abstract
setting.
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B.3.2 Law of Total Probability

Properties B.40. Law of Total Probability.

• When X is a discrete random variable and given a countable set of mutually inde-
pendent discrete random variables, {Y1, Y2, . . . , Yi, . . . }, and the conditional proba-
bilities Prob[X|Yi] for i = 1, 2, . . . , then the law of total probability (see Taylor and
Karlin [265]) in this completely discrete case is

Prob[X] =
∞∑
i=1

Prob[X|Yi]Prob[Yi], (B.92)

i.e., an extension of the law of additive probabilities for disjoint events.

• When X is a continuous random variable, the corresponding law of total probability
for the probability distribution 	X(x) is

	X(x) =
∞∑
i=1

	X|Y (x|Yi)Prob[Yi]. (B.93)

• Providing the density exists in the continuous random variable case, the correspond-
ing law of total probability for the probability density of φX(x) is

φX(x) =
∞∑
i=1

φX|Y (x|Yi)Prob[Yi]. (B.94)

• Finally, the expectation corresponding to the law of total probability is

E[f (X)] =
∞∑
i=1

EX[f (X)|Yi]Prob[Yi] (B.95)

for either the discrete or continuous X case and assuming the expectations of f (X)

exist. This is a special case of the iterated expectations given previously in (B.91).

Example B.41. An interesting financial example of (B.95) derived from [265] is the set of
statistics for the daily stock price return observed on a transaction by transaction basis.
Let the transaction price return be ξi = �Si = Si+1 − Si , where Si is the price of the ith
transaction, with S0 the initial price such as that from the previous day’s closing. Suppose
the returns are independent identically distributed (IID) random variables with common
mean Eξ [ξi] = µ and variance Varξ [ξi] = σ 2. Assume the current total daily stock return
after N transactions is

X =
N∑

i=0

ξi,
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where N is Poisson distributed, i.e., N is a counting process such that Prob[N = n] =
pn(�) with � being the Poisson parameter in (B.50), so EN [N ] = � = VarN [N ]. Starting
from the law of total probability, the expectation of the daily return is decomposed as

EX[X] =
∞∑

n=0

EX|N [X|N = n]pn(�) =
∞∑

n=0

Eξ |N

[
N∑

i=0

ξi

∣∣∣∣∣N = n

]
pn(�)

=
∞∑

n=0

Eξ

[
n∑

i=0

ξi

]
pn(�) =

∞∑
n=0

n∑
i=0

Eξ [ξi]pn(�)

=
∞∑

n=0

n∑
i=0

µpn(�) = µ

∞∑
n=0

npn(�) = µ�,

where the independence and identically distributed properties of the ξi random variables,
as well as the mean properties of N , have been used.

The variance of X is more complicated but follows from similar techniques, except
that terms are collected by completing the square in the ith return deviation from the mean
(ξi − µ) with several applications of the independence assumption,

VarX[X] = EX[(X −�µ)2] =
∞∑

n=0

Eξ |N

( N∑
i=0

ξi −�µ

)2
∣∣∣∣∣∣N = n

pn(�)

=
∞∑

n=0

Eξ

( n∑
i=0

(ξi − µ)+ (n−�)µ

)2
pn(�)

=
∞∑

n=0

Eξ

 n∑
i=0

n∑
j=0

(ξi − µ)(ξj − µ)+ 2(n−�)µ

n∑
i=0

(ξi − µ)+ (n−�)2µ2

pn(�)

=
∞∑

n=0

Eξ

 n∑
i=0

(ξi − µ)2 +
n∑

i=0

n∑
j 
=i

(ξi − µ)(ξj − µ)+ (n−�)2µ2

pn(�)

=
∞∑

n=0

[
n∑

i=0

Eξ [(ξi − µ)2] + (n−�)2µ2

]
pn(�) =

∞∑
n=0

[nσ 2 + (n−�)2µ2]pn(�)

= �σ 2 +�µ2 = �(σ 2 + µ2),

such that the ith return variance is augmented by the mean squared.

B.4 Probability Distribution of a Sum: Convolutions
Combinations of random variables play an important role in the analysis of stochastic
processes, especially in the sum of two stochastic processes. Consider the following result.
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Theorem B.42. Convolution for Sums of Random Variables.
If X and Y are independent random variables with densities φX(x) and φY (y), respectively,
then the distribution of the sum is

	X+Y (z) ≡ Prob[X + Y ≤ z] =
∫ +∞

−∞
	Y (z− x)φX(x)dx, (B.96)

provided the integral exists, where

	Y (y) =
∫ y

−∞
φY (η)dη.

Proof. By the independence of the variables X and Y , the joint density is separable,
φX+Y (x, y) = φX(x)φY (y). Thus, using the properties of the Heaviside step function,

H(x) =
{

0, x < 0
1, x ≥ 0

}
, (B.97)

then

Prob[X + Y ≤ z] = EX+Y [H(z−X − Y )]

=
∫ +∞

−∞

∫ +∞

−∞
H(z− x − y)φX(x)φY (y)dydx

=
∫ +∞

−∞

∫ z−x

−∞
φY (y)dyφX(x)dx

=
∫ +∞

−∞
	Y (z− x)φX(x)dx

= EX[	Y (z−X)],
where iterated integrals have been freely interchanged by the theorem of Fubini, which
asserts that if an integral exists as a two-dimensional integral, then the two iterative integrals
can be interchanged, i.e., the order of integration does not matter. Fubini’s theorem is often
used in probability theory [85, 169].

Since it has been assumed that the densities exist, then differentiation of the sides of
the equation in (B.96), but under the integral sign for those on the right, yields the formula
for the probability density of a sum, as follows.

Corollary B.43.

φX+Y (z) =
∫ +∞

−∞
φY (z− x)φX(x)dx. (B.98)

The particular functional product forms of (B.96), (B.98) are called convolutions [85].
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Definition B.44. Let the convolution of a distribution or density f (y) and a density φ(x)

be

(f ∗ φ)(z) ≡
∫ +∞

−∞
f (z− x)φ(x)dx (B.99)

provided the integral exists.

Consequently, we have the following properties, including the reformulation of the
above sum rules.

Properties B.45. Convolutions.

• The convolution of densities is symmetric (f ∗ φ)(z) = (φ ∗ f )(z) upon change of
variables in the integrand.

• φX+Y (z) = (φY ∗ φX)(z) = (φX ∗ φY )(z).

• 	X+Y (z) = (	X ∗ φY )(z) = (	Y ∗ φX)(z).

• The form for n mutually independent random variables, all with given densities, is

φX1+X2+···+Xn
(z) = (φX1 ∗ φX2 ∗ · · · ∗ φXn

)(z) (B.100)

=
((· · · ((φX1 ∗ φX2) ∗ φX3) · · · ∗ φXn−1) ∗ φXn

)(z)

(φX1 ∗ (φX2 ∗ (φX3 ∗ · · · (φXn−1 ∗ φXn
) · · · )))(z)

 ,

the latter forms depending on whether the convolution expansion is from the right or
from the left, respectively.

Remark B.46. The particular form depends on which particular inductive definition is
used, i.e., the right and left convolution expansion forms, respectively, are

φ∑n+1
i=1 Xi

(z) =


(
φ∑n

i=1 Xi
∗ φXn+1

)
(z)(

φX1 ∗ φ∑n+1
i=2 Xi

)
(z)

 ,

as can be shown by mathematical induction.

Lemma B.47. Convolution of Normal Densities is Normal.
If X and Y are normally distributed random variables, with probability densities φX(x) =
φn(x;µx, σ

2
x ) and φY (y) = φn(y;µy, σ

2
y ), respectively, then, letting Z = X + Y ,

φZ(z) = (φX ∗ φY )(z)

=
∫ +∞

−∞
φX(z− y)φY (y)dy (B.101)

= φn(z;µx + µy, σ
2
x + σ 2

y ).
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Maple Proof.
> phi:=(x,m,s)->exp(-(x-m)ˆ2/(2*sˆ2))/sqrt(2*pi*sˆ2);

φ := (x, m, s)→ e
(−1/2 (x−m)2

s2 )

√
2 π s2

> interface(showassumed=0); assume(sx>0); assume(sy>0);
> phi_Z:=simplify(int(phi(z-y,mx,sx)*phi(y,my,sy),
> y=-infinity..infinity));

phi_Z := 1

2

e

(
− (z−mx−my)2

2 (sy2+sx2)

)√
2
√

π

π
√

sy2 + sx2

For more general results see Exercises 16, 17, and 18.

B.5 Characteristic Functions
Often it is convenient to transform distributions or densities so that moments can be generated
more systematically, leading to a class of generating functions. Here, the emphasis will be
on one class that is more useful for both positive and negative random variables, called
characteristic functions.

Definition B.48. The characteristic function of a random variable X is defined in general
as

CX(u) ≡ E
[
eiuX

]
, (B.102)

where i = √−1 is the imaginary unit constant, u is the characteristic function argument,
assumed real here, the complex exponential is

eiux = cos(ux)+ i sin(ux)

by Euler’s formula with complex conjugate z∗ = (x + iy)∗ ≡ x − iy so

(exp(iux))∗ = exp(−iux)

and modulus (absolute value) |z| ≡ √(x2 + y2) so∣∣eiux
∣∣ = √cos2(ux)+ sin2(ux) = 1

according to Pythagoras’ theorem (summarizing almost all the complex algebra that will
be needed here). Only three main forms for CX(u) are listed here:

• If X is a continuous random variable with proper probability distribution function
	X(x), then

CX(u) =
∫ ∞

−∞
eiuxd	X(x), (B.103)

which is called a Fourier–Stieltjes transform.
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• If X is a continuous random variable and there exists a density corresponding to
	X(x), then

CX(u) =
∫ ∞

−∞
eiuxφX(x)dx, (B.104)

which is just an ordinary Fourier transform.

• If X is a discrete random variable with distribution function πk = Prob[X = xk] for
all nonnegative integers k, then

CX(u) =
∞∑

k=0

πke
iuxk , (B.105)

which is called a Fourier exponential series.

Properties B.49. Characteristic Functions.

• Moment properties:

• CX(0) = 1 by conservation of probability;

• C ′X(0) = EX[X] by differentiation of integrand;

• By induction for k = 0, 1, 2, . . . ,

dkCX

duk
(0) = ikEX

[
Xk
]
.

• Relationship to standard generating function:

GX(z) ≡ E
[
zX
]
, (B.106)

so letting zx = eiux , then z = eiu, u = −i ln(z), GX(z) = CX(−i ln(z)), and
CX(u) = GX(eiu).

• Complex properties: By Euler’s formula, the resolution into real and imaginary parts,

CX(u) = CX(u)+ iSX(u),

where the real part is the cosine transform

CX(u) =
∫ ∞

−∞
cos(ux)φX(x)dx

and the imaginary part is the sine transform

SX(u) =
∫ ∞

−∞
sin(ux)φX(x)dx,

so the complex conjugate is

C∗X(u) = CX(u)− iSX(u).



n16 book
2011/5/27
page B35

�

�

�

�

�

�

�

�

B.5. Characteristic Functions B35

• Reality and symmetric densities: The characteristic function CX(u) is real if and
only if the corresponding probability density is symmetric, i.e., φX(−x) = φX(x).
Note that CX(u) is real if the imaginary part SX(u) is zero and CX(−u) = C∗X(u) =
CX(u)− iSX(u) (exp(−iux) = cos(ux)− i sin(ux)), so

iSX(u) = 0.5(CX(u)− CX(−u)) = 0.5
∫ ∞

−∞

(
eiux − e−iux

)
φX(x)dx

= 0.5
∫ ∞

−∞
eiux (φX(x)− φX(−x)) dx,

then φX(x) symmetric implies SX(u) = 0 and SX(u) = 0 implies φX(x) symmetric.

• Upper bound: |CX(u)| ≤ 1, since by Euler’s formula and trigonometric identities

|CX(u)|2 =
(∫ ∞

−∞
cos(ux)φX(x)dx

)2

+
(∫ ∞

−∞
sin(ux)φX(x)dx

)2

=
∫ ∞

−∞

∫ ∞

−∞
(cos(ux) cos(uy)+ sin(ux) sin(uy))φX(x)φX(y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
cos(u(x − y))φX(x)φX(y)dxdy

≤
∫ ∞

−∞

∫ ∞

−∞
φX(x)φX(y)dxdy = 1.

• Sums of random variables and convolutions: Let {Xk; k = 1 : N} be a set of inde-
pendent random variables; then CX1+X2(u) = CX1(u)·CX1(u) since by the convolution
property (B.98)

CX1+X2(u) =
∫ ∞

−∞
eiuxφX1+X2(x)dx =

∫ ∞

−∞
eiux

(
φX1 ∗ φX2

)
(x)dx

=
∫ ∞

−∞
eiux

∫ ∞

−∞
φX2(x − y)φX1(y)dydx

=
∫ ∞

−∞
eiuyφX1(y)

∫ ∞

−∞
eiu(x−y)φX2(x − y)dxdy

= CX1(u) · CX1(u),

assuming integral interchange is permitted. Further, for a set of of N independent
random variables,

C∑N
k=1 Xk

(u) =
N∏

k=1

CXk
(u).

• Uniqueness: The characteristic function CX(u) is uniquely related to its correspond-
ing distribution 	X(x) and vice versa. (See Feller [85] for justification and more
information on characteristic and other generating functions, as well as the inverse
Fourier transform that is beyond the simple complex variables that are assumed here.)
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Examples B.50. Characteristic Functions for Common Distributions.

• Normal distribution:

Cn(u;µ, σ 2) =
∫ ∞

−∞
eiuxφn(x;µ, σ 2)dx = e−0.5σ 2u2+iµu.

• Exponential distribution (µ > 0):

Ce(u;µ) =
∫ ∞

0
eiuxφe(x;µ)dx = 1

1− iµu
= 1+ iµu

1+ µ2u2
.

• Uniform distribution (a < b):

Cu(u; a, b) = 1

b − a

∫ b

a

eiuxdx = eiub − eiua

i(b − a)u
.

• Double exponential (Laplace) distribution (µ > 0):

Cde(u; a, µ) = 1

2µ

∫ ∞

0
eiuxe−|x−a|/µdx = eiau

1+ µ2u2
.

• Poisson distribution (	 > 0, xk = k):

Cp(u;�) =
∞∑

k=0

eiukpk(�) =
∞∑

k=0

eiuke−� �k

k! = e−�

∞∑
k=0

(
eiu�

)k
k! = e�(eiu−1).

Characteristic functions are also used to define Lévy processes, which are basically
a generalization of jump-diffusion processes to include processes with infinite jump-rates.
Thus, characteristic functions are essential for including such singular behavior. For refer-
ences on Lévy processes see the cited sources on Lévy processes or jump-diffusion refer-
ences that emphasize Lévy processes [12, 60, 223].

Another application is to financial option pricing for jump-diffusions with stochastic
volatility (i.e., stochastic variance) where the characteristic function formulation and its
inverse Fourier transform offer certain advantages for computation (see Carr et al. [47] or
Yan and Hanson [289]).

B.6 Sample Mean and Variance: Sums of Independent,
Identically Distributed (IID) Random Variables

Just as there is no such thing as a truly random variable in practice, although the theory
of random variables is very useful, there is no such thing as a continuously sampled ran-
dom variable in practice. Typically, we sample discretely from a theoretical continuous
distribution and assume that the samples are independently sampled.
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Definition B.51. IID Random Variables.
A set of n random variables {Xk|k = 1 : n} is independent and identically distributed (IID)
if the Xk have the same distribution, i.e.,

	Xk
(x) = 	Xj

(x),

for all k, j = 1 : n, and Xk is independent of Xj when k 
= j , i.e., the joint distribution is

	Xk,Xj
(xk, xj ) = 	Xk

(xk) ·	Xj
(xj ).

Definition B.52. Sample Mean and Variance.
Let {Xk|k = 1 : n} be a sample of n random variables. Then the sample mean is defined as

mn = 1

n

n∑
k=1

Xk, (B.107)

and the sample variance or population variance is

s2
n =

1

n

n∑
k=1

(Xk −mn)
2, (B.108)

but the unbiased estimate of the sample variance is

ŝ2
n =

1

n− 1

n∑
k=1

(Xk −mn)
2. (B.109)

An estimate Ŷ of a quantity y is called an unbiased estimate if

E
[
Ŷ
] = y.

Theorem B.53. IID Sample Mean and Variance.
Let {Xk|k = 1 : n} be a set of IID random variables such that E[Xk] = µ and Var[Xk] = σ 2

for all k. Then

E[mn] = µ, (B.110)

E[s2
n] =

n− 1

n
σ 2, (B.111)

E[̂s2
n] = σ 2, (B.112)

Var[mn] = 1

n
σ 2. (B.113)

Remarks B.54.

• These sample moments and more are left as Exercises 13, 15, and 14. The first is
trivial, but the other two rely heavily on the independence property, so it is very helpful
to collect all terms as deviations from the mean forms like (Xk − µ). Also, split up
multiple sums into a single sum for equal indices (say, j = k) and the product of
an outer sum by an inner sum when the inner index is not equal to the outer index
(say, j 
= k). Note that for large n, the difference between the regular and unbiased
estimates of the variance will be small.
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• Since mn is a sum of random variables, then its distribution will be a nested convolu-
tion of the common distribution of the Xk variates. Convolutions are defined earlier
in (B.96) of Section B.4.

• Later, the relevant limit theorems will be discussed. The law of large numbers (B.114)
says that the sample mean will approach the distribution mean and the central limit
theorem, Theorem B.57, discussed later, says that the sample distribution will ap-
proach the normal limiting distribution for large sample sizes.

• For properties of powers of partial sums of zero-mean IID random variables see
Lemma 5.15 on p. 147.

B.7 Law of Large Numbers
When applying probability to real applications, the user may need to compare the statistical
properties of the practical sample with the ideal concepts of probability theory. For instance,
when comparing the sample mean to an ideal distribution mean, some justification comes
partly from the law of large numbers; a weak and a strong form are given here suitable for
this appendix of preliminaries (see also Feller [84] or Karlin and Taylor [162]).

B.7.1 Weak Law of Large Numbers (WLLN)

Theorem B.55. Law of Large Numbers, Weak Form.
Let {X1, X2, . . . Xi, . . . } be a sequence of independent identically distributed random vari-
ables (i.e., IID random variables or mutually independent random variables with common
distribution 	(x)) with common mean µ = E[Xi] for all i. Let Sn = ∑n

i=1 Xi be a se-
quence of partial sums such that Sn is the sum of n of these sample measurements, so that
the sample mean is mn = Sn/n. Then for every ε > 0,

Prob[|mn − µ| > ε] −→ 0 as n→+∞. (B.114)

Thus, if the sample size is large enough, the sample mean will approximate the dis-
tribution mean.

B.7.2 Strong Law of Large Numbers (SLLN)

Theorem B.56. Law of Large Numbers, Strong Form.
Let {X1, X2, . . . Xi, . . . } be a sequence of independent identically distributed random vari-
ables (i.e., IID random variables or mutually independent random variables with common
distribution 	(x)) with common mean µ = E[Xi] for all i. Let Sn = ∑n

i=1 Xi be a se-
quence of partial sums such that Sn is the sum of n of these sample measurements, so that
the sample mean is mn = Sn/n. Then

Prob[limn→∞mn = µ] = 1,

i.e., mn → µ with probability one as n→+∞.
(B.115)
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B.8 Central Limit Theorem
The central limit theorem is much more powerful than the law of large numbers. Again, a
simple form is given for IID random variables [84].

Theorem B.57. Central Limit Theorem.
Let {X1, X2, . . . , Xi, . . .} be a sequence of independent identically distributed random vari-
ables (i.e., IID random variables or mutually independent random variables with common
distribution 	(x)) with common mean µ = E[Xi] and variance σ 2 = Var[Xi] for all i. Let
Sn = ∑n

i=1 Xi be the sum of n of these sample measurements, so that the sample mean is
mn = Sn/n. Then for every fixed ξ ,

Prob

[
mn − µ

σ/
√

n
≤ ξ

]
−→ 	n(ξ ; 0, 1), (B.116)

as n→+∞, where 	n(ξ ; 0, 1) is the standard normal distribution defined in (B.1.4), when
µ = 0 and σ 2 = 1.

Thus, if the sample size is large enough, the deviation of the sample mean from the
distribution mean, scaled by σ/

√
n, will be asymptotically normally distributed with mean

0 and variance 1.
For stronger versions of the central limit theorem see the many probability references

listed at the end of this appendix.

B.9 Matrix Algebra and Analysis
Many important distributions, stochastic processes, and control problems are multivari-
ate, rather than scalar. Here matrix algebra and matrix analysis are summarized. Many
of the given properties can be computed symbolically using Maple and Mathematica or
numerically using MATLAB.

• Vector notation: x = [xi]n×1, in boldface, denotes an n-vector, where the number
xi is the ith component. Let y = [yi]n×1 be another n-vector. In this book vectors
are column vectors, unless transposed. Numbers are also called scalars here.

• Matrix or array notation: A = [ai,j ]n×n denotes an n × n square matrix (literally
a table) or array, where the number ai,j is an element of the ith row and j th column.
Sometimes we say that A is an order n matrix. Nonsquare matrices would be Q =
[qi,j ]m×n or R = [ri,j ]n×p. Matrix elements may also be functions.

• Matrix equality: B = A means that all matrix elements are equal, bi,j = ai,j for
i = 1 : n and j = 1 : n. The negation of the equality requires only one pair of
unequal elements, bk,� 
= ak,� for some (k, �).

• Matrix identity:

In ≡ [δi,j ]n×n, (B.117)
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where δi,j is the Kronecker defined in (B.54) and has the sum property that∑n
j=1 aj δi,j = ai provided i is in the range of j , j = 1 : n.

• Matrix transpose:

Q� = [qj,i]n×m, (B.118)

i.e., transposing a real matrix is switching rows and columns. If there are complex
elements, then the Hermitian transpose is used, QH = [q∗j,i]n×m, where if z = x+̂iy

is a complex number, then the complex conjugate is z∗ = x − îy and î = √−1 is
the imaginary unit such that î2 = −1. Although this book is exclusively about real
problems, there are important methods and even real problems that introduce complex
numbers into the analysis.

• Inner or dot or scalar product of two vectors:

x�y = x•y = x�y ≡
n∑

i=1

xiyi, (B.119)

provided y is also an n-vector. If there are complex vector elements or components,
then the Hermitian inner product is used:

xH y ≡
n∑

i=1

x∗i yi .

• Matrix trace:

Trace[A] ≡
n∑

i=1

ai,i . (B.120)

• Matrix-vector product:

Qx ≡
∑

j=1

qi,j xj


m×1

, (B.121)

i.e., the ith component is (Qx)i =∑j=1 qi,j xj (also, integer m ≥ 1).

• Matrix-matrix product:

QR ≡
[∑

k=1

qi,krk,j

]
m×p

, (B.122)

so for two matrices to be commensurate or consistent in multiplication the number
of columns of the premultiplier Q must be the same as the number of rows of the
postmultiplier R (also, integers m ≥ 1 and p ≥ 1).
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• Transpose of a matrix product: (QR)� = R�Q�.

• Matrix inverse: For square matrices A, the inverse A−1 has the property

A−1A = In = AA−1 (B.123)

whenever A−1 exists and this property provides a set of algebraic equations for de-
termining the elements of the inverse. See the MATLAB, Maple, and Mathematica
packages.

• Vector norm:

||x||p ≡
(

n∑
i=1

|xi |p
)1/p

(B.124)

is the pth norm with the properties that

1. ||x||p ≥ 0;

2. ||x||p = 0 if and only if x = 0;

3. ||sx||p = |s|||x||p if s is a scalar;

4. ||x + y||p ≤ ||x||p + ||y||p, called the triangular inequality;

5. ||x�y||p ≤ ||x||p||y||p, called the Cauchy inequality.

Common norms are the

1. 1-norm, ||x||1 =∑n
i=1 |xi |;

2. infinity-norm, ||x||∞ = maxi=1:n[|xi |];
3. 2-norm, ||x||2 =

√∑n
i=1 x2

i =
√

x�x if x real, but ||x||2 =
√

xH x if complex.

• Matrix norm: Matrix norms are defined on the more basic vector norms,

||A||p ≡ max
||x||p 
=0

[||Ax||p
/ ||x||p] = max

||u||p 
=1

[||Au||p
]
, (B.125)

and they satisfy properties analogous to the vector norm properties above. Usual
values are p = 1, 2, or∞.

• Matrix condition number:

cond p[A] ≡ ||A||p||A−1||p (B.126)

is the pth condition number, bounded below by condp[A] ≥ 1 and is scale-invariant
since condp[sA] = |s| cond p[A] if s is a nonzero scalar. Implicit in the definition is
that the inverse A−1 exists.

• Matrix determinants: If A is a square matrix, then the determinant Det[A] has a
scalar value that can be computed by recursion from smaller determinants, expanding
by either a row or a column. For instance,
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1. If n = 1, then Det[a1,1] = a1,1.

2. If n = 2, then

Det

[
a1,1 a1,2

a2,1 a2,2

]
= a1,1Det[a2,2] − a1,2Det[a2,1].

3. If n = 3, then

Det

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 = a1,1Det

[
a2,2 a2,3

a3,2 a3,3

]

− a1,2Det

[
a2,1 a2,3

a3,1 a3,3

]

+ a1,3Det

[
a2,1 a2,2

a3,1 a3,2

]
.

4. And so forth.

Some useful properties are Det[A�] = Det[A] since row and column expansions
give the same result; the Cauchy–Binet formula states that

Det[AB] = Det[A]Det[B] (B.127)

provided A and B are commensurate, and Det[In] = 1; a corollary is Det[A−1] =
1/Det[A] if A−1A = In.

• Systems of linear equations:

Ax = b, (B.128)

where the coefficient matrix A and b = [bi]n×1 are given and the object is to find the
vector x.

1. In theory, a unique solution exists if Det[A] 
= 0; else if Det[A] = 0, then A is
called singular.

2. In numerical practice, a nearly singular A usually has serious problems and the
condition number cond[A] due to its scale-invariance is a better measure of diffi-
culties. If cond[A] is of moderate size (not much bigger than O(1), say), then the
problem is called well-conditioned, but if cond[A] is very large, then the prob-
lem is called ill-conditioned. In Gaussian elimination with back substitution,
row pivoting with row scaling or full pivoting can reduce the conditioning prob-
lems and produce more reliable approximate solutions. The MATLAB, Maple,
and Mathematica systems provide either numerical or symbolic functions to
solve Ax = b.
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• Matrix eigenvalue problems:

Ax = λx (B.129)

is the eigenvalue problem statement, where the object is to find a set of characteristic
values or eigenvalues λk and associated eigenvectors xk that characterize the matrix A.

1. Since the algebraic problem (A − λkIn)xk = 0 is equivalent to the original
(B.129),

Det[A− λIn] = 0

is called the characteristic or eigen equation.

2. (A− λkIn) is an nth polynomial in λk ,

Pn(λ) =
n∑

i=0

ciλ
i,

where c0 = Det[A], c1 = −Trace[A], . . . , cn = (−1)n.

3. The characteristic equation is the condition for finding a nontrivial eigenvalue,
xk[xi,k]n×1 
= 0.

4. Solving Det[A− λIn] = 0 yields n eigenvalues [λi]n×1.

5. The eigenvectors can be found from a subset of the original problem but are not
unique.

6. If xk is an eigenvector, then so is y = s∗x, where s is an arbitrary, nonzero scalar.

7. A unit or normalized eigenvector is of the form ||uk||p = 1.

8. If A is real and symmetric, then the eigenvectors are orthogonal if x�j xk =
||xk||22δj,k or orthonormal if ||xk||2 = 1 in addition.

9. If A is not real and nonsymmetric, then the left or adjoint eigen problem

yH
j A = µ∗j yH

j or AH yj = µj yj

would be needed for orthogonality conditions since 0 = (λk − µ∗j )y
H
j xk , so if

µ∗j 
= λk , then yH
j xk = 0.

• Gradient of a scalar valued function of a vector-argument:

∇x[F ](x) = ∂F

∂x
(x) = Fx(x) ≡

[
∂F

∂xi

(x)

]
n×1

, (B.130)

so the gradient is a column vector with the same shape as x here. In some texts [44],
the gradient may be a row vector, so matrix-vector products will be different there.

• Gradient of a matrix-vector product transpose:

∇x
[
(Ax)�

] = [ ∂

∂xi

n∑
k=1

aj,kxk

]
n×n

=
[

n∑
k=1

aj,kδi,k

]
n×n

= [aj,i

]
n×n

= A�, (B.131)



2011/5/
page B4

�

�

�

�

�

�

�

�

B44 Online Appendix B. Preliminaries in Probability and Analysis

so the gradient just peels off the premultiplied x� since (Ax)� = x�A� (i.e., the
gradient peel theorem).

• Quadratic forms:

Q = x�Ax =
n∑

i=1

n∑
j=1

xiai,j xj , (B.132)

which is a scalar, and since Q is a scalar and the transpose has no effect on scalars, then

Q = Q� = x�A�x = 1

2

(
Q+Q�) = x�ASx, (B.133)

where AS ≡ 1
2 (A + A�) is the symmetric part of A. Thus, for quadratic forms, the

user might as well assume A to be symmetric or that A� = A.

• Positive definite matrices: The matrix A is positive definite if for every nonzero
vector x (x 
= 0) the quadratic form

x�Ax > 0, (B.134)

sometimes abbreviated as A > 0. Similarly, A is positive semidefinite if for all
x 
= 0,

x�Ax ≥ 0, (B.135)

or if so, then we say A ≥ 0. Further, A is positive definite if and only if all its
eigen-values are positive [68], so then A is invertible, i.e., A−1 exists.

• Gradient of a quadratic form:

∇x
[
x�Ax

] = 2Ax, (B.136)

assuming A is symmetric, by two applications of the peel theorem, one on the left
and another on the right by transposing first.

• Hessian matrix of a scalar valued function:

∇x
[∇�x [F ]] (x) =

[
∂2F

∂xi∂xj

(x)

]
n×n

, (B.137)

so the matrix of second derivatives is a square n× n matrix.

• Hessian matrix of a quadratic form:

∇x
[∇�x [x�Ax]] = ∇x

[
2(Ax)�

] = 2∇x
[
x�A

] = 2A (B.138)

by the peel theorem, assuming that A is symmetric.
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B.10 Some Multivariate Distributions
The probability distributions, such as normal, exponential, and Poisson, previously consid-
ered have been functions of a single real sample variable representing a single random vari-
ate. However, some applications require multidimensional distributions representing jointly
distributed multivariate random variables. The continuous multivariate normal (multinor-
mal) distribution and the discrete multinomial distribution will serve as examples.

B.10.1 Multivariate Normal Distribution

Definition B.58. The multivariate normal distribution for the real m-dimensional vector
random variate X = [Xi]m×1 ∈ R

m is defined by the density in matrix-vector notation as

φn(x;µ, 
) ≡ 1

(2π)m/2
√

Det[
] exp
(−0.5(x − µ)T 
−1(x − µ)

)
, (B.139)

where µ = [µi]m×1 = E[X] is the vector mean,


 = [σi,j ]m×m = E
[[

(Xi − µi)(Xj − µj)
]
m×m

]
is the positive definite variance-covariance matrix, i.e., σi,i ≡ σ 2

i = Var[Xi] for i = 1 : m,
while σi,j ≡ Cov[Xi, Xj ] if j 
= i for i, j = 1 : m, and Det[
] is the determinant of 
.
The correlation coefficient is the normalized covariance,

ρi,j ≡ Cov[Xi, Xj ]√
Var[Xi]Var[Xj ]

= σi,j

σiσj

, (B.140)

provided σi, σj 
= 0, and i, j 
= 0.
Total probability is conserved since∫

Rm

φn(x;µ, 
)dx = 1.

Theorem B.59. Correlation coefficient bounds.
Let X1 and X2 be two random variables. Then

|ρ(X1, X2)| ≤ 1, (B.141)

provided σ1 > 0 and σ2 > 0, but if ρ(X1, X2) = ±1, then

X2/σ2 = ±X1/σ1 + C (B.142)

for some constant C.

Proof. The proof is modeled after Feller’s proof [84, p. 236]. Let ρ = ρ(X1, X2), and
using (B.74)

Var[X1/σ1 ±X2/σ2] = Var[X1/σ1] ± 2Cov[X1/σ1, X2/σ2] + Var[X2/σ2]
= 2(1± ρ) ≥ 0,

since Var[X] ≥ 0, so |ρ| ≤ 1.
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If ρ = 1, then let ±1 = −1 and thus X1/σ1 − X2/σ2 = C1, where C1 is a constant,
but if ρ = −1, then let ±1 = +1 and thus X1/σ1 + X2/σ2 = C2, where C2 is a constant.
Combining these two cases leads to the form (B.142).

Example B.60. The bivariate normal distribution, i.e., the two-dimensional case, needs
several conditions to keep the density well-defined: σi > 0 for i = 1 : 2, σ1,2 = ρσ1σ2 where
ρ = ρ1,2 is the correlation coefficient between states 1 and 2 such that−1 < ρ < +1. Thus,


 =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
, (B.143a)


−1 = 1

1− ρ2

[
1/σ 2

1 −ρ/(σ1σ2)

−ρ/(σ1σ2) 1/σ 2
2

]
. (B.143b)

The 
−1 follows upon calculating the two-dimensional inverse of 
, while substituting for

−1 and Det[
] = (1− ρ2)σ 2

1 σ 2
2 yields the more explicit density form:

φn

([
x1

x2

]
;µ, 


)
= 1

2πσ1σ2

√
1− ρ2

exp

(
− 0.5

1− ρ2

[(
x1 − µ1

σ1

)2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+
(

x2 − µ2

σ2

)2
])

. (B.144)

Some of the first few moments are tabulated (results from the Maple symbolic computation
system) in Table B.1:

Table B.1. Some expected moments of bivariate normal distribution.

Some Binormal Expectations

E[1] = 1
E[xi] = µi, i = 1 : 2

Var[xi] = σ 2
i , i = 1 : 2

Cov[x1, x2] = ρσ1σ2

E[(xi − µi)
3] = 0, i = 1 : 2

E[(xi − µi)
4] = 3σ 4

i , i = 1 : 2

E[(x1 − µ1)
2(x2 − µ2)

2] = (1+ 2ρ2)σ 2
1 σ 2

2

Remark B.61. The bivariate normal density becomes singular when σ1 → 0+ or σ2 → 0+
or ρ2 → 1− and the density becomes degenerate. If ρ > 0, then X1 and X2 are positively
correlated, while if ρ < 0, then X1 and X2 are negatively correlated.

B.10.2 Multinomial Distribution

The multinomial distribution may be useful for studying discrete collections of samples
from continuous distributions, such as the bin frequencies of histograms and many other
applications [84, 129].
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Definition B.62. Using m bins where πk (0 < πk < 1) is the theoretical probability
associated with the kth bin as well as a parameter of the distribution for k = 1 : m bins
such that

m∑
k=1

πk = 1 (B.145)

and fk is the observed frequency (integer outcome count, fk ≥ 0) for the kth bin for a
sample of N observations such that

m∑
k=1

fk = N, (B.146)

the multinomial distribution is given by the joint probability mass function

p(f;π) = Prob
[
F = f

∣∣1T π = 1, 1T f = N
] = N !

m∏
k=1

π
fk

k

fk! , (B.147)

where f = [fi]m×1 is the frequency value vector, F = [Fi]m×1 is the random frequency
vector, and 1 = [1]m×1 is the ones or summing vector.

Example B.63. When m = 2, the multinomial distribution is called the binomial distribu-
tion and has probability function

p(f1, f2;π1, π2) = N !πf1
1 π

f2
2

f1!f2! =
(

N

f1

)
π

f1
1 (1− π1)

N−f1 , (B.148)

where the binomial coefficient (
n

k

)
≡ n!

k!(n− k)! (B.149)

with the constraints f2 = N − f1 and π2 = 1 − π1 used on the far right-hand side. The
binomial distribution is applicable to trials with just two outcomes, called Bernoulli trials
(Feller [84]). Often these two outcomes or bins are identified as either a success, with
probability π1, or failure, for example, with probability π2 = 1 − π1. Feller [84] calls
the binomial distribution, the normal distribution, and the Poisson distribution the three
principal distributions throughout probability theory.

The binomial theorem gives the binomial expansion

(π1 + π2)
N =

N∑
f1=0

(
N

f1

)
π

f1
1 π

N−f1
2 , (B.150)

but the coefficients are precisely the binomial probability functions

(π1 + π2)
N =

N∑
f1=0

p(f1, N − f1;π1, π2), (B.151)
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which is why the distribution in (B.148) is called the Binomial distribution for binomial
frequencies f1 for f1 = 0 : N (Feller [84]).

Consequently, the binomial expectation for some function g is given by

E[g(F1)] =
N∑

f1=0

g(f1)p(f1, N − f1;π1, 1− π1).

Using parametric differentiation of the sums, with Fk being the kth random variable and fk

being the kth given conditioned variable, it can be shown that

• E[1] = 1 when g(fk) = 1 (actually (B.150) or (B.151) with π2 = π1),

• E[Fk] = Nπk when g(fk) = fk ,

• Var[Fk] = Nπk(1− πk) when g(fk) = (fk −Nπk)
2,

• Cov[F1, F2] = −Nπ1π2 = −Nπk(1 − πk) = −Var[F1] when g(f1) = (f1 −
Nπ1)((N − f1)−N(1− π1)) = −N(f1 −Nπ1)

2.

As an illustration of an application of parametric differentiation to sum a finite number
of terms, consider the first moment:

E[F1] =
N∑

f1=0

f1

(
N

f1

)
π

f1
1 (1− π1)

N − f1

= π1
d

dπ1

 N∑
f1=0

(
N

f1

)
π

f1
1 (π2)

N − f1

∣∣∣∣∣∣
π2=1−π1

= π1
d

dπ1

[
(π1 + π2)

N
]∣∣

π2=1−π1
= π1N

[
(π1 + π2)

N−1
]∣∣

π2=1−π1
= Nπ1.

Similarly, forms with powers of {π1, d/dπ1} can be used for higher moments.
Figure B.6 illustrates the binomial distributions as a function of the binomial fre-

quency f1 when the total count is N = 10 for three values of the binomial probability
parameter, π1 = 0.25, 0.5, and 0.75. See Online Appendix C, Section C.6, for the MATLAB
figure code. These binomial distributions roughly resemble a discretized version of the nor-
mal distribution, except that they are skewed for π1 = 0.25 and 0.75 while the distribution
for π1 = 0.50 is symmetric. Feller [84] states that when Nπ1(1−π1) is large, the binomial
distribution can be approximated by the normal distribution with mean Nπ1 and variance
Nπ1(1− π1), but when N is large and π1 is the same order as 1/N , then the binomial dis-
tribution can be approximated by the Poisson distribution with � = Nπ1 order one. Since
the Poisson can also be approximated by the normal approximation, there is some overlap
of the two approximations, but only the Poisson approximation is good when � = Nπ1 is
small.

The multinomial distribution has the same basic moments as the binomial, but the
constraints on the πk and fk also constrain the expectation summations. The multinomial
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Figure B.6. Binomial distributions with respect to the binomial frequency f1 with
N = 10 for values of the probability parameter, π1 = 0.25, 0.5, and 0.75. These represent
discrete distributions, but discrete values are connected by dashed, dotted, and dash-dotted
lines only to help visualize the distribution form for each parameter value.

distribution in (B.147) is in fact the terms in the multinomial expansion theorem,(
m∑

k=1

πk

)N

= N !
m−1∏
i=1

(N−Fi−1)∑
fi=0

π
fi

i

fi !

 π
N−Fm−1
m

(N − Fm−1)! ,

=
m−1∏
i=1

(N−Fi−1)∑
fi=0

p(f;π)

∣∣∣∣∣∣
fm=(N−Fm−1)

, (B.152)

which can be obtained from (m−1) successive applications of the binomial expansion. It can
be shown by induction upon replacing πm by (πm+πm+1) in the induction hypothesis above
and using an additional application of the binomial expansion with the power (N −Fm−1).
Here, Fk ≡ ∑k

j=1 fj is the partial sum of the first k frequencies, such that F0 ≡ 0. For
application to the multinomial distribution, the constraints lead to the elimination formula
fm = N − Fm−1 for the mth terms, so that the final fraction in (B.152) depends on the
first m− 1 sample frequencies fk . In the case of the multinomial distribution, also the mth
theoretical probability πm = 1−∑m−1

j=1 πj can be eliminated by conservation of probability.

B.11 Basic Asymptotic Notation and Results

Definitions and Results B.64. For purposes of a refined study of limits and asymptotic
behaviors found in many stochastic problems, basic asymptotic concepts can be defined as
follows.

• Equals big Oh or is the order of symbol is such that f (x) = O(g(x)) as x → x0 if
f (x)/g(x) is bounded as x → x0 provided g(x) 
= 0 in a deleted neighborhood of
x = x0.
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For example, 8 sin(ε/7) = O(ε) as ε → 0 or (2N2+ 3N + 100)/(3N + 5) = O(N)

as N →∞ or exp(−0.5�t) = 1−0.5�t+O((�t)2) as �t → 0. Also, O(100�t) =
O(�t) as �t → 0, since constants need not be considered. As alternate notation,
O((�t)2) = O2(�t) as �t → 0.

• Equals little oh or is smaller order than is such that f (x) = o(g(x)) as x → x0 if
f (x)/g(x)→ 0 as x → x0 provided g(x) 
= 0 in a deleted neighborhood of x = x0.
Also the notation f (x)� g(x) is equivalent to f (x) = o(g(x)).

For example, exp(−0.5�t) = 1 − 0.5�t + o(�t) as �t → 0 or
∫ t+�t

t
f (τ )dτ =

f (t)�t + o(�t) as �t → 0 provided f (t) is continuous. Note O(�t) + o(�t) =
O(�t) as �t → 0.

• Equals ord or is the same order as is such that f (x) = ord(g(x)) as x → x0

if f (x) = O(g(x)) but that f (x) 
= o(g(x)). The relation f (x) ≤ ord(g(x)) is
equivalent to f (x) = O(g(x)) and f (x) < ord(g(x)) is equivalent to f (x) =
o(g(x)).

For example, (�t)2 < ord(�t) as �t → 0 but �t > ord((�t)2) as �t → 0.

• The symbol∼or is asymptotic to is such thatf (x) ∼ g(x)asx → x0 iff (x)/g(x)→
1 as x → x0 provided g(x) 
= 0 in a deleted neighborhood of x = x0.

For example, (1− exp(−0.425�t))/�t ∼ 0.425 as �t → 0.

Remark B.65. The symbol∼ is commutative since if f (ε) ∼ g(ε), then g(ε) ∼ f (ε)

as ε → 0 provided both f (ε) and g(ε) are not equal to zero in a neighborhood of
ε = 0. Also, one should never say that f (ε) ∼ 0 (bad asymptotics and mathematics)
since according to our definition that would be dividing by zero.

• A sequence {φn(x)} for n = 0 : ∞ is an asymptotic sequence if φn+1(x) < ord(φn(x))

as x → x0.

For example, φn(x) = (x − x0)
n as x → x0 or φn(�t) = (�t)n/2 as �t → 0+ for

n = 0 : ∞.

• An expansion
∑∞

n=0 anφn(x), where an are coefficients constant in x and φn(x) are
elements of an asymptotic sequence, is an asymptotic expansion which is asymptotic
to a function f (x) if

f (x)−
N∑

n=0

anφn(x) < ord(φN(x))

as x → x0 for all N , and if so, then

f (x) ∼
∞∑

n=0

anφn(x)
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as x → x0. As a corollary, the inductive algorithm for the coefficients follows starting
with a0 = limx→x0 f (x)/φ0(x) and

aN+1 = lim
x→x0

f (x)−∑N
n=0 anφn(x)

φN+1(x)

for N = 0 : +∞, assuming that all limits exist.

For example, most convergent Taylor series, when considered under limiting condi-
tions, are asymptotic expansions, or asymptotic power series in particular,

f (x) ∼
∞∑

n=0

f (n)(x0)(x − x0)
n/n!

as x → x0, but some asymptotic expansions can be divergent and still be useful if a
finite number of terms are used, such as the expansion of the famous Stieltjes integral
divergent asymptotic expansion example [28]∫ ∞

0

e−t dt

(1+ xt)
∼

∞∑
n=0

(−1)nn!xn

as x → 0, which clearly diverges. For asymptotic applications, we are usually
interested in only a few terms, whether the expansion is convergent or divergent, so
the first few terms of a divergent expansion can be useful. Limits play a different role in
asymptotic expansions than they do for Taylor series, in that limits of the independent
variable (here, x) are used in asymptotics, while limits of the index (here, n) are
used to test the convergence or divergence of Taylor series for a fixed value of the
independent variable.

• For integrals dominated by an exponential whose exponent, say, φ(x)/ε, has a max-
imum at x∗ within the interior of the range of integration (a, b) such that φ′(x∗) = 0
and φ′′(x∗) < 0, i.e., φ(x) ∼ φ(x∗) + 0.5φ′′(x∗)(x − x∗)2, while f (x) ∼ f (x∗) is
continuous and subdominant, as x → x∗ and 0 < ε << 1, Laplace’s method for
asymptotic evaluation of integrals [28] leads to the asymptotic approximation∫ b

a

eφ(x)/εf (x)dx ∼
√

2πε

−φ′′(x∗)
eφ(x∗)/εf (x∗) (B.153)

as ε → 0+. If x∗ = a or x∗ = b, i.e., an end point maximum, then the integral is
asymptotic to one half the above approximation.

For example, the general factorial function or gamma function [2] for real x with
x > −1,

x! = �(x + 1) =
∫ ∞

0
e−t t xdt = xx+1

∫ ∞

0
ex(−y+ln(y))dy

∼ √2πxe−xxx (B.154)
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as x →∞, after transforming the original integral to the Laplace form using t = xy

with φ(y) = −y+ln(y) and ε = 1/x, since the fast exponentially decaying coefficient
function exp(−t) does not satisfy the subdominant requirement for Laplace’s method.
(Often, some transformation is necessary to fit a method.) The result is a correction
to Stirling’s (asymptotic) formula ln(x!) ∼ x ln(x), which is only the leading term
of the exponent expansion of x! as x →∞. Some authors refer to the leading term
(B.154) of the full integral as Stirling’s formula, e.g., Feller [84].

Remark B.66. Laplace and Probability.
Since Laplace was associated with the early foundational work in the analytical
theory of probability with his treatise Théorie Analytique des Probabilités, it is likely
that Laplace’s method was developed for probability integrals, in particular normal
probability integrals, which were not restricted to infinite or zero limits of integration
and the integrals can be found exactly.

B.12 Generalized Functions: Combined Continuous and
Discrete Processes

In stochastic problems, especially in extreme limits and distributions, representations be-
yond ordinary functions, such as generalized functions, are useful for the complete descrip-
tion of stochastic problems, such as combined continuous and discrete processes. While
there are alternative abstract representations, generalized functions are very helpful in mo-
tivating stochastic models and solutions for associated stochastic problems as they are for
the study of differential equations. Many generalized functions are defined only under
integration but can be constructed as the limit of a sequence of ordinary functions.

Definitions B.67.

• The Heaviside step function, H(x), is a generalized function with the property that∫ +∞

−∞
f (x)H(x − x0)dx =

∫ +∞

x0

f (x)dx (B.155)

for some integrable function f (x) on (−∞,+∞).

• Heaviside step function:
One pointwise definition of the Heaviside step function is

H(x) =
{

0, x < 0
1, x ≥ 0

}
, (B.156)

which is right-continuous, but another version takes the average (a) value at zero so
that it has better numerical properties,

Ha(x) =


0, x < 0
1/2, x = 0
1, x > 0

 , (B.157)
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although the Heaviside function is often left undefined at x = 0 since a single isolated
point does not contribute to an ordinary or Riemann integral. For generalized func-
tions, the averaged one, Ha(x), is better for underlying numerical approximations.

• For intervals on the real line, the right-continuous Heaviside step function is related
to the indicator function for some set A,

1x∈A ≡
{

1, x ∈ A

0, x /∈ A

}
, (B.158)

so that
1x∈(0,+∞) = H(x)

using the above Heaviside step function definition.

For example, the probability distribution can be written

	X(ξ) = EX[H(ξ −X)] = EX[1X∈(−∞,ξ ]], (B.159)

provided the density is sufficiently continuous. Note that 1(y−x)∈[a,b) = 1x∈(y−b,y−a], by
definition, is a technique which becomes more useful in calculating multivariate probability
distributions.

Definition B.68. Dirac Delta Function.
The Dirac delta function, δ(x), is a generalized function with the property that∫ +∞

−∞
f (x)δ(x − x0)dx = f (x0) (B.160)

for any continuous function f (x) defined for x on R and some point x0 on R (see Friedman
[89]).

Remark B.69. The generalized function δ(x − x0) is not a regular function and it has
meaning only in the integrand of an integral. Since δ(x − x0) picks out a single value of
the function f (x), it must be concentrated at a point, i.e., for any ε > 0,∫ x0+ε

x0−ε

f (x)δ(x − x0)dx = f (x0).

Hence, for ε → 0+, this integral will give the same answer f (x0), whereas for an ordinary
integral of calculus and f (x) continuous the answer would be O(ε) as ε → 0+ and thus
zero in the limit. Consequently, the integral with δ(x − x0) can be ignored away from the
point of concentration x0. The delta function, δ(x− x0), is also called an impulse function
when it is used to impart an impulse to drive a differential equation.

A simple constructive approximation that in the limit leads to the delta function δ(x)

is the simple triangular approximation

dε(x) ≡ 1

ε

{
(1− |x|/ε), 0 ≤ |x| ≤ ε

0, ε ≤ |x|
}

. (B.161)
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Now consider an arbitrary test function f (x) that is continuous and continuously differen-
tiable. Then using the definition (B.161),∫ +∞

−∞
dε(x)f (x)dx = 1

ε

∫ +ε

−ε

(1− |x|/ε)f (x)dx

=
∫ +1

−1
(1− |y|)f (εy)dy

=
∫ +1

−1
(1− |y|)[f (0)+ O(ε)]dy

= f (0)+ O(ε)→ f (0)

as ε → 0+. Since dε(x) has the same effect at δ(x) in the limit, it can be said that

δ+0(x) = lim
ε→0+

gen= δ(x),

where the symbol of generalized equality is
gen= defined as follows.

Definition B.70. Generalized Equality.
Let

g(x)
gen= h(x)

if for a sufficient class of test functions, f (x) (sufficiently smooth, bounded with exponential
decay as x →∞, depending on the application) both g(x) and h(x) have the same effect
in integration, ∫ +∞

−∞
f (x)g(x)dx =

∫ +∞

−∞
f (x)h(x)dx.

Using the Wiener process density φW(t)(w) (B.23), it can also be shown that in the
generalized sense,

φW(0+)(w)
gen= δ(w). (B.162)

The generalized result (B.162) is obtained by examining the asymptotic limit as t → 0+,

E[f (W(t))] =
∫ +∞

−∞
f (w)φn(w; 0, t)dw → f (0),

for a continuous, exponentially bounded test function |f (w)| < K exp(aw) for some K > 0
and a < a0 for some a0 is sufficient, since the negative quadratic exponent of the density
dominates any simple exponential at infinity. One need only consider the finite interval
[−R, R] for some sufficiently large R, R/

√
t % 1 when t � 1 will suffice, so that the tail

portion of the integral on (−∞,+∞) is negligible.

Remarks B.71.

• The technique suggested above is Laplace’s method for integrals given in (B.153);
see also [61, 28], for instance, or Exercise 23.
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• Since we are interested here in limits of the normal distribution and its density, and

the density has a delta function limit such that φW(0+)(w)
gen= δ(w) according to

(B.162), then the use of the H(x) step function form (B.156) in the relation 	X(ξ) =
EX[H(ξ − X)] (B.159) is inconsistent. This is because 	�W(t)(0) = 1/2 for all
positive values of �t , so

	W(0+)(w) =
∫ w

−∞
δ(v)dv =


0, w < 0
1/2, w = 0
1, w > 0

 = Ha(w)

or (B.157), since the averaged value at zero is needed. However, using the expectation
form of the distribution (B.159) (normally, products of delta functions cannot be
made), then

E[H(w −W(0+))] =
∫ +∞

−∞
H(w − v)δ(v)dv = H(w),

which is incorrect if w = 0 when using the generalized limits for the normal density.

Examples B.72. Generalized Function.

• δ(ax + b)
gen= (1/a)δ(x + b/a) for constant a > 0 and b by changing variables

ξ = ax in the integral definition (B.160).

• δ(−x)
gen= δ(x), i.e., δ(x) behaves as an even function, since f (0−) = f (0) if the

function f is continuous.

• xδ(x)
gen= 0, since by (B.160) with any f (x) = xF(x), F(x) continuous and x0 = 0,∫ +∞

−∞
F(x)xδ(x)dx = 0 · F(0) = 0.

• Let f (x) be any continuously differentiable function on R. Then the derivative of the
Dirac delta function δ′(x) is defined by∫ +∞

−∞
f (x)δ′(x)dx = −f ′(0). (B.163)

The motivation for this definition is the integration by parts calculus tool that∫ +∞

−∞
f (x)δ′(x)dx =

[
f (x)δ(x)−

∫
f ′(x)δ(x)dx

]∣∣∣∣+∞−∞ = −f ′(0),

where the fact that δ(x) is concentrated at x = 0 means the f (x)δ(x) vanishes
at infinity since δ(x) dominates by vanishing faster than any f (x) can grow. An
alternate motivation is to use the original definition of δ(x − x0) in (B.160) and
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assume that δ(x − x0) is differentiable under the integral, i.e., it has been generated
by a continuously differential approximation satisfying uniformity conditions. Then

d

dx0

∫ +∞

−∞
f (x)δ(x − x0)dx = −

∫ +∞

−∞
f (x)δ′(x − x0)dx = f ′(x0) , (B.164)

the minus sign arising from differentiating (x − x0) with respect to x0 as a simple
application of the chain rule.

• Similarly, δ′′(x) for a twice continuously differentiable function f is defined in the
generalized sense by ∫ +∞

−∞
f (x)δ′′(x)dx = +f ′′(0), (B.165)

derivable by two integrations by parts and using the concentration at x = 0. The same
result also follows by differentiating the integral definition of δ(x − x0) in (B.160)
twice.

• H ′(x)
gen= δ(x) with respect to continuous function f (x) for which f (x) and its

derivative vanish as |x| → ∞, since by integration by parts,∫ +∞

−∞
f (x)H ′(x)dx =

[
f (x)H(x)−

∫
f ′(x)H(x)dx

]∣∣∣∣+∞−∞
= −

∫ +∞

0
f ′(x)dx = f (0).

An alternate motivation for this result, is to start with the original definition of the
Heaviside step function,

d

dx0

∫ +∞

−∞
f (x)H(x − x0)dx = −

∫ +∞

−∞
f (x)H ′(x − x0)dx

= −f (x0)dx, (B.166)

so ignoring the two minus signs, we have H ′(x − x0)
gen= δ(x − x0).

• A discrete distribution can be transformed into a continuous distribution by using a
sequence of delta functions such that the density for the discrete random variable X

with (m+ 1) possible discrete values {xk|k = 0 : m} each with probability πk , such
that the generalized density is given by

φ
(gen)

X (x)
gen=

m∑
k=0

πkδ(x − xk).
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Hence, the expectation of some function f (x) is

E(gen)

X [f (X)] =
∫ +∞

−∞
f (x)φX(x)dx =

m∑
k=0

πk

∫ +∞

−∞
f (x)δ(x − xk)dx

=
m∑

k=0

πkf (xk),

which is the same formula as given in (B.48) previously. Also, conservation of prob-
ability is confirmed by

E(gen)
x [1] = 1

using the discrete probability property (B.46). However, the implied probability
distribution 	

(gen)

X (x) is problematic since neither definition, H(x−xk) or Ha(x−xk),
of the step function is suitable at x = xk , but see the appropriate right-continuous
step function HR(x) ahead in (B.169).

Since it is an aim of the text to treat continuous and discrete distributions together,
a unified applied treatment is needed. For this treatment, generalized functions [185, 89],
primarily step and delta functions, will be used for discrete distributions in a manner similar
to the way they are used in differential equations, but more suited to stochastic processes.
Thus, the continued discrete distribution will be illustrated and defined for the Poisson
process since the probabilities are already ordered by integer values.

Lemma B.73.

• The Poisson distribution made right-continuous (RC) is

	P(t)(X) = Prob[X ≤ x] =
{∑�x�

j=0 pj (λt) , x ≥ 0
0 , x < 0

}
, (B.167)

which readily follows, and where �x� is the integer floor function such that x − 1 <

�x� ≤ x.

• In terms of the generalized RC step-function HR(x) this Poisson distribution can be
generalized to

	P(t)(X) =
∞∑

k=0

pk(λt)HR(x − k) (B.168)

such that

HR(x) =
{

0 , x < 0
1 , x ≥ 0

}
, (B.169)

where the property HR(0) = HR(0+) and HR(0−) = 0 embodies the required right-
continuity property. Clearly, 	P(t)(X) is right-continuous, rather than purely con-
tinuous.
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Proof. The distribution form (B.167) follows directly from the definition of the continuous
distribution using the discrete Poisson distribution Prob[P(t) = k] = pk(λt) for k = 0 : ∞.
Thus,

Prob[P(t) ≤ x] =
k∑

j=0

pj (λt), k ≤ x < k + 1

for k = 0 : ∞, since it takes k jumps for x to exceed k, i.e., k = �x�, so k ≤ x < k + 1 is
equivalent to x − 1 < �x� ≤ x, and any more will require the (k + 1)st jump. Thus, the
kth probability pk(λt) is included in the sums if x ≥ k, i.e., pk(λt) is included in the form

pk(λt)HR(x − k),

leading to (B.168).

Definition B.74. The Poisson process density corresponding to this continuous distribution
is denoted by

φP(t)(X) =
∞∑

k=0

pk(λt)δR(x − k), (B.170)

where δR(x) is the right-continuous (RC) delta function such that

HR(x) =
∫ x

−∞
δR(y)dy (B.171)

having the desired property that HR(0) = 1 and the integral property∫ ∞

−∞
f (y)δR(y)dy = f (0−). (B.172)

These generalized functions and their properties will be encountered in more detail
later in this text. The generalized HR(x) function is somewhat different from the concretely
defined H(x) in (B.156). Also, if the function f is continuous at x = 0 in B.172, then
f (0−) can be replaced by f (0).

The relationship between the exponential distribution and the Poisson distribution
follows from the time of the arrival of the first jump T1 under the standard assumption that
the Poisson processes P(t) starts at t = T0 ≡ 0 and that the distribution for the first jump
is the same as the probability that the Poisson jump-counter exceeded one, i.e.,

	T1(t; λ) ≡ Prob[T1 ≤ t] = Prob[P(t) ≥ 1] =
∞∑

k=1

pk(λt)

=
∞∑

k=1

e−λt (λt)k

k! = e−λt
(
eλt − 1

) = 1− e−λt , (B.173)

which is the same result as (B.40). The same result holds for the interarrival time, Tk+1−Tk ,
between successive Poisson jumps, except that the more general result depends on the
property of stationarity of the Poisson process that is introduced in Chapter 1.
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Summarizing distribution properties for combinations of continuous random variables
and right-continuous jump processes, we have the following.

Properties B.75. Right-Continuous Distribution Functions �(x).

• 	 is nondecreasing, since probabilities must be nonnegative.

• 	 is right-continuous, by properties of integrals with nonnegative integrands includ-
ing integrands with right-continuous delta functions or probability masses.

• 	(−∞) = +0 by properties of integrals and X > −∞.

• 	(+∞) = 1 if 	 is a proper distribution.

B.13 Fundamental Properties of Stochastic and Markov
Processes

B.13.1 Basic Classification of Stochastic Processes

The classification of stochastic processes is important since the classification leads to the
appropriate method of treatment of the stochastic process applications.

A stochastic process or random process is a random function of time ξ = X(t;ω),
where X(t;ω) is a random variable depending on time t and some underlying random
variable ω on the sample space �. (Again the ω dependence will often be suppressed unless
it is needed to describe some stochastic process attribute.)

If the time domain is continuous on some interval [0, T ], then it is said to be a
stochastic processes in continuous time whether the domain is bounded or unbounded.
However, if the time domain is discrete, ξ = Xi in discrete time units i = 1 : ∞ called
stages, then it is a stochastic process in discrete time or random sequence. If ξ = X(t) is
not a random variable, then X(t) would be called a deterministic process.

Stochastic processes are also generally classified according to the properties of the
range of the random variable ξ = X(t), called the state space of the process. This state
space can be continuous, in which case it is still referred to as a stochastic process, but if the
state space is discrete with a finite or infinite number of states, then the stochastic process
is called a chain. The Gaussian process is an example of a process with a continuous state
space, while the simple Poisson process with unit jumps is an example of a process with a
discrete state space. A mixture of Gaussian and Poisson processes, called a jump-diffusion,
is an example of a hybrid stochastic system.

B.13.2 Markov Processes and Markov Chains

An important class of stochastic processes is the Markov process X(t) in which the future
state depends on only some current state but not on a past state. This Markov property offers
many advantages in the analysis of the behavior of these processes.
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Definitions B.76.

• A stochastic process X(t) for t ≥ 0 in continuous time (ct) is a Markov process on a
continuous state (cs) space Scsct if for any t ≥ 0, �t ≥ 0, and x ∈ Scsct,

Prob[X(t +�t) ≤ x|X(s), s ≤ t] = Prob[X(t +�t) ≤ x|X(t)]. (B.174)

• A stochastic process Xi for i = 0 : ∞ in discrete time (dt) is a Markov process on a
continuous state space Scsdt if for any n = 0 : ∞, i = 0 : ∞, and xn ∈ Scsdt,

Prob[Xn+1 ≤ xn+1|Xi = xi, i = 0 : n]
= Prob[Xn+1 ≤ xn+1|Xn = xn]. (B.175)

• A stochastic process X(t) for t ≥ 0 in continuous time is a Markov chain on a discrete
state (ds) space Sdsct = {0, 1, 2, . . . } if for any t ≥ 0, �t ≥ 0, and j (t) ∈ Sdsct,

Prob[X(t +�t) = j (t +�t)|X(s) = j (s), s ≤ t]
= Prob[X(t +�t) = j (t +�t)|X(t) = j (t)]. (B.176)

• A stochastic process Xi for i = 0 : ∞ in discrete time is a Markov chain on a discrete
state space Sdsdt = {0, 1, 2, . . . } if for any n = 0 : ∞, i = 0 : ∞, and ji ∈ Sdsdt,

Prob[Xn+1 = jn+1|Xi = ji, i = 0 : n]
= Prob[Xn+1 = jn+1|Xn = jn]. (B.177)

The conditional probability Prob[Xn+1 = jn+1|Xn = jn] = Pn,n+1(jn, jn+1) is called
the transition probability for the step from stage n to stage n+ 1.

Thus, the Markov process can be called memoryless or without after-effects since,
for example, in the continuous time case, the future state X(t +�t) depends only on the
current state X(t), but not on the past states {x(s), s < t}. This memoryless property of
Markov processes leads immediately to the independent increments property of Markov
processes:

Lemma B.77. If X(t) is a Markov process in continuous time, then the state increment
�X(t) ≡ X(t+�t)−X(t) is independent of �X(s) ≡ X(s+�s)−X(s), s, t, �s, �t ≥ 0,
if the time intervals are disjoint except for trivial overlap, i.e., either s+�s ≤ t or t+�t ≤ s,
such that

	�X(t),�X(s)(�x, �y) ≡ Prob[�X(t) ≤ �x, �X(s) ≤ �y]
= Prob[�X(t) ≤ �x]Prob[�X(s) ≤ �y].

Note that the Markov property definition can be reformulated as

Prob[X(t +�t) ≤ x +�x|X(s), s < t;X(t) = x] = Prob[�X(t) ≤ �x|X(t) = x]
and thus is independent of any increments in the past.
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B.13.3 Stationary Markov Processes and Markov Chains

Definition B.78. A Markov process is called stationary or time-homogeneous if the prob-
ability distribution depends only on the time difference, i.e.,

• If Prob[X(t + �t) − X(t) ≤ y] = Prob[�X(t) ≤ y] depends on �t ≥ 0 and is
independent of t ≥ 0 in the continuous time case given y in the state space, continuous
or discrete, or

• If Prob[Xi+k −Xi ≤ y] depends on k ≥ 0 and is independent of i ≥ 0 in the discrete
time case given y in the state space, continuous or discrete. (It is also said that the
transition probabilities are stationary.)

The stationary Markov chain in discrete time is fully characterized by the transition
probability matrix [Pi−1,j−1]N×N , where Pi,j = Prob[Xn+1 = j |Xn = i] for all stages
n = 0 : N − 1, where N may be finite or infinite [265]. Although the main focus here is
on Markov processes in continuous time, Markov chains serve as numerical approximation
for Markov processes, such as in the Markov chain approximation methods of Kushner and
coworkers [175, 176, 179].

B.14 Continuity, Jump Discontinuity, and
Nonsmoothness Approximations

In the standard calculus, much of the emphasis is on functions that are continuous, dif-
ferentiable, continuously differentiable, or have similar nice properties. However, many
of the models for Markov processes do not always have such nice analytical properties,
since Poisson processes are discontinuous and Gaussian processes are not smooth. Thus,
the standard calculus will be reviewed and revised to include the not-so-nice but essential
properties.

B.14.1 Beyond Continuity Properties

If X(t) is a process, i.e., function of time, whether stochastic or deterministic, the basic
differences are summarized below.

Definitions B.79.

• Let the increment for the process X(t) be �X(t) ≡ X(t +�t)−X(t), where �t is
the time increment.

• Let the differential for the process X(t) be dX(t) ≡ X(t + dt)−X(t) with respect
to the time t , where dt is the infinitesimal time differential.

• The increment and differential are precisely related by the integral

�X(t) =
∫ t+�t

t

dX(s).
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While much of the regular calculus is usually cast in a more abstract form, much of
applied stochastic calculus is based on differentials and increments, so the following will
be formulated with increments or differentials, ready to use.

Definitions B.80.

• The process X(t) is a continuous process at the point t0 if

lim
�t→0

X(t0 +�t) = X(t0)

provided the limit exists.

• Else the process X(t) is discontinuous at t0.

• The process X(t) is continuous on the interval (t1, t2) if it is continuous at each point
of the interval.

• The process X(t) has a jump discontinuity at t0 if

lim
�t→0|�t |>0

X(t0 +�t) 
= X(t0)

provided both the limit exists, i.e., the limit from the left

X(t−0 ) = lim
�t→0+

X(t0 −�t)

and does not agree with the limit from the right

X(t+0 ) = lim
�t→0+

X(t0 +�t),

where �t → 0+ means {�t → 0, �t > 0}. In other words, if

X(t+0 ) 
= X(t−0 ),

then X(t) has a jump at t = t0 [169]. The corresponding jump at the jump discon-
tinuity (discontinuity of the first kind) is defined as

[X](t0) ≡ X(t+0 )−X(t−0 ) = lim
�t→0+

X(t0 +�t)− lim
�t ′→0+

X(t0 −�t ′). (B.178)

• The process X(t) is right-continuous at t0 if

lim
�t→0
�t>0

X(t0 +�t) = X(t0)

such that the jump of X at t is defined as

[X](t0) ≡ X(t0)−X(t−0 ), (B.179)

since X(t+0 ) = X(t0). Left-continuous processes are similarly defined.
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Remark B.81. The jump definition is consistent with the definition of the increment and
consequently the differential, since if there is a jump at time t1, then dX(t−1 ) = X(t−1 +dt)−
X(t−1 ) = X(t+1 )− X(t−1 ) = [X](t1), accepting the convention that dt is both positive and
infinitesimal so that X(t−1 + dt) = X(t+1 ). Similarly, for the increment �X(t−1 )→ [X](t1)
as �t → 0+.

Definitions B.82.

• The process X(t) is smooth at t0 if

lim
�t→0

�X(t0)/�t

exists, i.e., X(t) is differentiable at t0.

• Else the process X(t) is nonsmooth.

Remark B.83. For example, if �X(t1) ∼ C
√

�t for some nontrivial constant C, then
�X(t1) → 0 and �X(t1)/�t ∼ C/

√
�t → ∞ as �t → 0+, so X(t) is continuous but

not smooth at t1.

B.14.2 Taylor Approximations of Composite Functions

Construction of application models often relies on Taylor’s formula with remainder (La-
grange form) for small perturbations about some given point, given here in the following
form.

Theorem B.84. Taylor Approximation for a Scalar-Valued Function of a Scalar Argu-
ment, f (x).
Let the function f (x) be defined, continuous, and (n+ 1) times continuously differentiable
for |�x| < R, then

f (x +�x) =
n∑

m=0

f (m)(x)

m! (�x)m + f (n+1)(x + θ�x)

(n+ 1)! (�x)n+1, (B.180)

where f (m)(x) is the mth order derivative of f at x, θ ∈ (0, 1) is the relative location of the
mean value point x + θ�x in the remainder term, and R is the convergence radius.

Further, if the highest derivative f (n+1) is bounded on the interval of convergence,
|�x| < R, then the remainder

Sn(x;�x)− f (x +�x) = O((�x)n+1),

as �x → 0, where

Sn(x;�x) ≡
n∑

m=0

f (m)(x)

m! (�x)m

is the partial sum of the first (n+ 1) terms for m = 0 : n.
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For most applications, only a few terms are needed, while for stochastic applications
in continuous time this form will be applied when the variable x is a process like X(t). More
generally, the interest is in functions that depend explicitly on time t and implicitly on time
through the process X(t), like F(X(t), t). This is illustrated for a deterministic process
increment in function F(X(t), t), three times continuously differentiable in both t and x.
First, the increment is split up to partially separate out the first argument X(t)-process and
second t-argument explicit time changes so that the one-dimensional Taylor approximation
(B.180) can be separately applied to the component parts. Using partial derivatives, we
have the next theorem.

Theorem B.85. TaylorApproximation for a Scalar-Valued Function of a Scalar-Argument
X(t) and Time t , f (X(t), t).
Let f (x, t) be three times differentiable in both x and t , let the process X(t) be continuous,
and let �X(t) = X(t +�t)−X(t) so X(t +�t) = X(t)+�X(t). Then

�f (X(t), t) ≡ f (X(t)+�X(t), t +�t)− f (X(t), t)

= (f (X(t)+�X(t), t +�t)− f (X(t)+�X(t), t))

+ (f (X(t)+�X(t), t)− f (X(t), t))

= ∂f

∂t
(X(t), t)�t + ∂f

∂x
(X(t), t)�X(t) (B.181)

+1

2

∂2f

∂t2
(X(t), t)(�t)2 + ∂2f

∂t∂x
(X(t), t)�t�X(t)

+1

2

∂2f

∂x2
(X(t), t)(�X)2(t)

+O((�t)3)+ O((�t)2�X)+ O(�t(�X)2)+ O((�X)3)

as �t → 0 and �X(t)→ 0.

Remarks B.86.

• Keeping the second order partial derivative terms written out explicitly is in antici-
pation that, although the process may be continuous, the process may not be smooth
as in the case of the Gaussian process.

• The above expansion can be extended to vector processes X(t) = [Xi(t)]nx×1 and is
best expanded by components.

• Another difference with the stochastic cases is that X will also be a function of the
underlying probability space variable ω, so X = X(t;ω) and �X = �X(t;ω)→ 0
in probability (only) as �t → 0+. Since �X(t;ω) may have an unbounded range,
e.g., in the case that �X(t;ω) is normally distributed as �t → 0+, but �t >

0, the boundedness part of the order symbol definition O would be invalid if, for
instance, the �X in O3(�X) were replaced by �X(t;ω). However, something like
O(E[�X3(t;ω)]) would be valid. Nevertheless, formula (B.181) will be useful as a
preliminary or formal expansion calculation, prior to applying an expectation and
neglecting very small terms.
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In the case where the space process is a vector function of time, then performing the
Taylor expansion by components facilitates the calculation of the Taylor approximation.

Theorem B.87. TaylorApproximation for a Scalar-Valued Function of a Vector-Argument
X(t) and Time t , f (X(t), t).
Let f (x, t) be three times differentiable in both x and t , let the column vector process
X(t) = [Xi]nx×1 be continuous, i.e., by component, and let �X(t) = X(t +�t)−X(t) so
X(t +�t) = X(t +�t)+�X(t). Then

�f (X(t), t) ≡ f (X(t)+�X(t), t +�t)− f (X(t), t)

= (f (X(t)+�X(t), t +�t)− f (X(t)+�X(t), t))

+ (f (X(t)+�X(t), t)− f (X(t), t))

= ∂f

∂t
(X(t)+�X(t), t)�t

+1

2

∂2f

∂t2
(X(t)+�X(t), t)(�t)2 + O((�t)3)

+
nx∑
i=1

∂f

∂xi

(X(t), t)�Xi(t)

+
nx∑
i=1

nx∑
j=1

1

2

∂2f

∂xi∂xj

(X(t), t)�Xi(t)�Xj(t)+ O(||�X||3)

= ∂f

∂t
(X(t), t)�t + ∇�x [f ](X(t), t)�X(t) (B.182)

+ 1

2

∂2f

∂t2
(X(t), t)(�t)2 + 1

2
�X�(t)∇x

[∇�x [f ]] (X(t), t)�X(t)

+ ∇x

[
∂f

∂t

]
(X(t), t)�X(t)�t

+ O((�t)3)+ O((�t)2||�X||)+ O(�t ||�X||2)+ O(||�X||3)
as �t → 0 and �X(t)→ 0, where the gradient of f is the vector

∇x[f ](X(t), t) ≡
[

∂f

∂xi

(X(t), t)

]
nx×1

,

the transpose vector is the row vector �x� = [�xj ]1×nx , and ||�x|| is some norm, e.g., the
infinite norm ||�x||∞ = maxi[|Dxi |].

In the case where there is a vector-valued function f depending on time t and a
space process X(t) that is a vector function of time, then systematically performing the
Taylor expansion by both f and X components as well as by the t argument of f and finally
reasembling the results into matrix-vector form facilitates the calculation of the Taylor
approximation.
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Theorem B.88. TaylorApproximation for a Vector-Valued Function of a Vector-Argument
X(t) and Time t , f(X(t), t).
Let f(x, t) = [fi(x, t)]nx×1 be three times differentiable in both x and t , let the column
vector process X(t) = [Xi(t)]nx×1 be continuous, i.e., continuous by component, and let
�X(t) = X(t +�t)− X(t) so X(t +�t) = X(t +�t)+�X(t). Then

�f(X(t), t) ≡ f(X(t)+�X(t), t +�t)− f(X(t), t)

= f(X(t)+�X(t), t +�t)− f(X(t), t)

= [fi(X(t)+�X(t), t +�t)− fi(X(t), t)]nx×1

=
[
∂fi

∂t
(X(t), t)�t +

nx∑
j=1

∂fi

∂xj

(X(t), t)�Xj(t)

+ 1

2

∂2fi

∂t2
(X(t)+�X(t), t)(�t)2 +

nx∑
j=1

∂2fi

�t∂xj

(X(t), t)�Xj(t)�t

+ 1

2

nx∑
k=1

nx∑
j=1

∂2fi

∂xk∂xj

(X(t), t)�Xj(t)�Xk(t)

+ O((�t)3)+ O((�t)2||�X||)+ O(�t ||�X||2)+ O(||�X||3)
]

nx×1

= ∂f
∂t

(X(t), t)�t + (�X�(t)∇x
) [f ](X(t), t) (B.183)

+ 1

2

∂2f
∂t2

(X(t), t)(�t)2 + (�X�(t)∇x
) [∂f

∂t

]
(X(t), t)�t

+ 1

2

(
�X(t)�X�(t)

) : (∇x∇�x
) [f ](X(t), t)

+ O((�t)3)+ O((�t)2||�X||)+ O(�t ||�X||2)+ O(||�X||3)
as �t → 0 and �X(t) → 0, where the gradient of f is premultiplied by the transpose of
�X(t) so that dimension of f is obtained,

(�X�(t)∇x)[f ](X(t), t) ≡
 nx∑

j=1

�Xj(t)
∂fi

∂xj

(X(t), t)


nx×1

,

the second order derivative Hessian is similarly arranged as a scalar-valued operator
double dot product,

(
�X(t)�X�(t)

) : (∇x∇�x
) [f ](X(t), t) ≡

 nx∑
j=1

nx∑
k=1

�Xj(t)�Xk(t)

· ∂2fi

∂xk∂xj

(X(t), t)


nx×1

,
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the transpose vector is the row vector �x� = [�xj ]1×nx , and ||�x|| is some norm, e.g., the
infinite norm ||�x||∞ = maxi[|Dxi |].

In general the double dot product is related to the trace of a matrix (B.120).

Definition B.89. Double Dot Product of Two Square Matrices.

A :B ≡ Trace[AB] =
n∑

j=1

n∑
k=1

Aj,kBk, j (B.184)

for square matrices A and B.

However, if the process is discontinuous, as it will be for the jumps of the Poisson
process, then (B.181) is no longer valid since the assumption on X(t) is not valid at the
jump. Thus, if X(t) has a jump discontinuity at t = t1, then the most basic form for change
in f , the jump, must be used.

Theorem B.90. “Zero Order Taylor Approximation” or Jump Function Limit for a
Scalar-Valued Function of a Discontinuous Vector Process Argument X(t) and Time t ,
f (X(t), t).

�f (X(t−1 ), t−1 )→ [f ](X(t1), t1) ≡ f (X(t+1 ), t+1 )− f (X(t−1 ), t−1 ) (B.185)

as �t → 0+.

This result extends the jump function definition (B.178). For right-continuous jumps
t+1 can be replaced by t1 (B.185) as in (B.179). The most fundamental changes in processes
are the large jumps, such as crashes or rallies in financial markets or disasters and bonanzas
in nature or machine failure and repair in manufacturing production. It is important to be
able to handle jumps, even though the analysis may be much more complicated than for
continuous processes.

B.15 Extremal Principles
Finding extremal properties, maxima and minima, through optimization is another area
where nice function properties may be overemphasized, but for many optimal control ap-
plications, results are needed for more general functions, whether deterministic or random
functions.

Definitions B.91. Extrema.
Let f (x) be defined on some connected domain D in R

m.

• Then f (x) has a global maximum at x∗ in D if f (x) ≤ f (x∗) for all x on D.

• Similarly, f (x) has a global minimum at some point x∗ on D if f (x) ≥ f (x∗) for all
x on D.
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• Often, such global extrema are called absolute extrema.

• Then f (x) has a local maximum or relative maximum at x∗ on D if there is a
neighborhood, N (x∗) of x∗ on D, such that f (x∗ + �x) ≤ f (x∗) for sufficiently
small |�x|.

• Similarly, f (x) has a local minimum or relative minimum at x∗ on D if there is a
neighborhood, N (x∗) of x∗ on D, such that f (x∗ + �x) ≥ f (x∗) for sufficiently
small |�x|.

• Often, such local extrema are called relative extrema.

Remarks B.92.

• The standard definition of global extrema, i.e., global maxima and global minima,
covers all of the most extreme values, the biggest and the smallest, regardless of the
analytic properties of the target function. The definition of global extrema is the most
basic definition, the one we need to turn to when derivative methods fail. On the other
hand, finding global extrema is very difficult in general and is by no means a closed
problem.

• However, the standard definition of local extrema is as strictly interior extrema, due
to the restriction that the neighbor be in the domain of interest, which would exclude
boundary extrema which may include the extreme value being sought.

• The general recipe for global extrema is often given by the following:

1. Find local extrema, usually restricted to where the target function is well be-
haved.

2. Find boundary extrema, perhaps also restricted to points where the function is
well behaved.

3. Find the function values at all points where the function is not well behaved,
i.e., discontinuous, nonsmooth, etc.

4. Find the most extreme values of all of the above for the global extreme values.

Theorem B.93. First Order Necessary Conditions for a Local Minimum (Maximum).
Let f (x) be continuously differentiable in an open neighborhood N (x∗) of x∗. If x∗ is a
local minimum (maximum), then ∇[f ](x∗) = 0.

If ∇[f ](x∗) = 0, then x∗ is also called a stationary point or interior critical point
of f . For proof see any good calculus or analysis text, else see Nocedal and Wright [221]
for a proof using Taylor’s approximation and for the following theorem.

Theorem B.94. Second Order Necessary and Sufficient Conditions for a Local Minimum
(Maximum).
Let ∇2[f ](x) be continuous in an open neighborhood N (x∗) of x∗.
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• If x∗ is a local minimum (maximum) of f , then∇[f ](x∗) = 0 and∇2[f ](x) is positive
(negative) definite.

• If ∇[f ](x∗) = 0 and ∇2[f ](x) is positive (negative) definite, then x∗ is a minimum
(maximum) of f .

B.16 Exercises
Many of these exercises, depending on the instructor, can be done by using MATLAB,
Maple, or Mathematica, but if theoretical, the MATLAB Symbolic Toolbox will be needed.

1. Prove the variance-expectation identity for any random variable X:

Var[X] = E[X2] − E2[X]. (B.186)

(Note that E2[X] = (E[X])2 here, since squaring the operator also squares the value.)

2. Prove the following identity for the variance of the sum of two random variables
X and Y :

Var[X + Y ] = Var[X] + 2Cov[X, Y ] + Var[Y ]. (B.187)

3. Prove the following identity for the variance of the product of two random variables
X and Y ,

Var[XY ] = X
2
Var[Y ] + 2XYCov[X, Y ] + Y

2
Var[X] − Cov2[X, Y ]

+ 2XE[δX(δY )2] + 2XE[(δX)2δY ] + E[(δX)2(δY )2],
where X = E[X] and Y = E[Y ] are means, while δX = X−X and δY = Y − Y are
deviations from the mean. Further, in the case that X and Y are independent random
variables, show that

Var[XY ] = X
2
Var[Y ] + Y

2
Var[X] + Var[X]Var[Y ]. (B.188)

4. Prove the Chebyshev inequality,

Prob[|X| ≥ ε] ≤ E[|X|2]/ε2, (B.189)

where ε > 0.
(Hint: It is sufficient to assume that a probability density φ(x) exists. Subtract the
left-hand side from the right-hand side of the inequality, convert the expectation and
probability to integrals, and then show that the sum is nonnegative.

5. Prove the Schwarz inequality (Cauchy–Schwarz inequality) in terms of expecta-
tions,

E[|XY |] ≤
√

E[X2] · E[Y 2]. (B.190)
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(Hint (big): Use the fact that (u − v)2 ≥ 0 and let u = X/
√

E[X2] and v =
Y/
√

E[Y 2], assuming that X and Y have finite, positive variances. Alternatively,
explore the characteristic roots of E[(λX + Y )2] ≥ 0 and consider that if there are
only real roots λi at the minimum, then the discriminant (square root argument) must
be positive in the quadratic formula.)

6. Prove Jensen’s inequality: If f is a convex function, i.e., f is real and

f (θx + (1− θ)y) ≤ θf (x)+ (1− θ)f (y) (B.191)

for all x, y and 0 < θ < 1, then

E[f (X)] ≥ f (E[X]). (B.192)

7. (a) Derive this simple form of Bayes’ rule for two related random variables X

and Y :

Prob[X = x|Y = y] = Prob[Y = y, X = x]
Prob[Y = y] (B.193)

provided Prob[Y = y] > 0.
(Hint: You need only to use the conditional probability definition (B.83).)

(b) Derive, using an expansion of (B.193) and also the law of total probability
(B.92), the multiple random variables or events form of Bayes’ rule for the
case of the random event Y that occurs in conjunction with a member of the
exhaustive (complete) and countable set of disjoint (mutually exclusive) events,
{Xi, i = 1 : n}, i.e., the total law of probability if applicable,

Prob[Xi = xi |Y = y] = Prob[Y = y, Xi = xi]∑
j=1 Prob[Y = y, Xj = xj ] · Prob[Xj = xj ] .

8. For the uniform distribution, confirm the formulas for the mean, variance, coefficient
of skewness, and coefficient of kurtosis.

9. Derive the following identity between the standard normal and the general normal
distributions:

	n((ln(x)− µ)/σ ; 0, 1) = 	n(ln(x);µ, σ 2).

10. Show, for the lognormal density with random variable Xln(t), that the maximum
location, the mode of the distribution, or the most likely value is given by

x∗ = Mode [Xln(t)] = exp
(
µ− σ 2

)
.

Also, compare the mean or expected value to the mode for the lognormal distribution
by calculating the ratio

E [Xln(t)] /Mode [Xln(t)] ;
then compare this lognormal ratio to that for the normal variates,

E [Xn(t)] /Mode [Xn(t)] .
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11. For the exponential distribution, confirm the formulas for the mean, variance, co-
efficient of skewness, and coefficient of kurtosis.

12. Show the following equivalence between the exponential distribution expectation
and the uniform distribution expectation:

Ee[f (Xe)] = Eu[f (−µ ln(Xu))]
for any integrable function f .

13. Show the sample moment formulas for a set of IID random variables Xk with E[Xk] =
µ and Var[Xk] = σ 2 for k = 1 : n of Subsection B.6 are correct, i.e.,

(a) E[mn] = µ for sample mean mn (B.107);

(b) E[s2
n] = (n− 1)σ 2/n for sample variance s2

n (B.108);

(c) E[̂s2
n] = σ 2 for sample variance unbiased estimate ŝ2

n (B.109);

(d) Var[mn] = σ 2/n for sample mean mn .

(Hint: See Remarks B.54 on p. B37.)

14. Show that for a set of IID random variables, the covariance of the sample mean mn

and the sample variance s2
n satisfy

Cov[mn, s
2
n] = µ3/n,

where the third central moment is µ3 = E[(Xk − µ)3]. Discuss what probability
property relating mn and s2

n is implied by the result if the IID distribution is even like
the normal distribution and what property is implied asymptotically as n → +∞.
See Subsection B.6.

15. Let S = ∑n
k=1 Xk be the partial sum of n IID random variables {Xk} each with

mean E[Xk] = µ and variance Var[Xk] = σ 2. Further, let the mth central moment
be defined as µ(m) = E[(Xk − µ)m], so that µ(1) = 0 and µ(2) = σ 2. Show that

(a) E[S] = nµ;

(b) Var[S] = nσ 2;

(c) E[(S −E[S])3] = nµ(3) so is zero if the distribution of Xk has no skew (B.11);

(d) E[(S − E[S])4] = nµ(4) + 3n(n − 1)σ 2, where the first term is related to the
coefficient of kurtosis (B.12).

(Hint: Use the binomial theorem, S−E[S] =∑n
k=1(Xk−µ) and the fact µ(1) = 0.)

16. Show that the product of two normal densities is proportional to a normal density,
i.e.,

φn(x;µ1, σ
2
1 ) · φn(x;µ2, σ

2
2 ) = φn

(
x; µ1σ

2
2 + µ2σ

2
1

σ 2
1 + σ 2

2

,
σ 2

1 σ 2
2

σ 2
1 + σ 2

2

)
(B.194)

· 1√
2π(σ 2

1 + σ 2
2 )

exp

(
− (µ1 − µ2)

2

2(σ 2
1 + σ 2

2 )

)
.

(Hint: Apply the completing the square technique to combine the two densities.)
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17. Let Xi be independent normal random variables with density φXi
(x), mean µi , and

variance σ 2
i for i = 1 to K .

(a) Show that the product of two normal densities is a normal density whose mean
is the sum of the means and whose variances is the sum of the variance, using
(B.194),

I2(x) ≡ (φX1 ∗ φX2

)
(x) =

∫ +∞

−∞
φX1(x − y)φX2(y)dy (B.195)

= φn(x;µ1 + µ2, σ
2
1 + σ 2

2 ).

(b) Using (B.195) for K = 2 as the induction initial condition, show the general
result by induction that

IK(x) ≡
((

K−1∏
i=1

φXi
∗
)

φXK

)
(x) = φn

(
x;

K∑
i=1

µi,

K∑
i=1

σ 2
i

)
. (B.196)

18. Show that the distribution of the sum of two IID random variables, U1 and U2,
uniformly distributed on [a, b], is a triangular distribution on [2a, 2b], i.e., show
in terms of densities that

φU1+U2(x) =
∫ +∞

−∞
φU1(x − y)φU2(y)dy

= 1

(b − a)2


(x − 2a), 2a ≤ x < b + a

(2b − x), b + a ≤ x ≤ 2b

0, otherwise

 . (B.197)

Confirm that the resulting density conserves probability on (−∞,+∞).
(Hint: It may be helpful to sketch the paths for nonzero integration in y on the
xy-plane, paying attention to the limits of integration for each fixed x.)

Remark B.95. Different from the normal distribution results in Exercise 17, the
convolution of two uniform random variables does not conserve the uniformity of the
distribution.

19. Show that the distribution of the sum of three IID random variables, Ui , for i = 1 : 3
uniformly distributed on [a, b], is a piecewise quadratic distribution on [3a, 3b],
i.e., show in terms of densities that

φ∑3
i=1 Ui

(x) =
∫ +∞

−∞
φU1+U2(x − y)φU3(y)dy (B.198)

= 1

2(b − a)3



+(x − 3a)2, 3a ≤ x < 2a + b
−(x − (b + 2a))2

+2(b − a)2

−(2b + a − x)2

 , 2a + b ≤ x < a + 2b

+(3b − x)2, a + 2b ≤ x ≤ 3b

0, otherwise


using the result of the previous exercise for φU1+U2(x).
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(Hint: With this and the previous exercise, symbolic computation may be more desir-
able, e.g„ Maple or Mathematica.)

20. For the bivariate normal distribution, verify the inverse of 
 in (B.143) and the
explicit form for the density (B.144). Also, confirm by iterated integration that
E[X1] = µ1, Var[X1] = σ 2

1 , and Cov[X1, X2] = ρσ1σ2.
(Hint: Only techniques such as completing the square and transformations to the
generic integral∫ +∞

−∞
exp(−x2/2)[c0 + c1x + c2x

2]dx = √2π [c0 · 1+ c2 · 1]

for any constants {c0, c1, c2} are needed.)

21. For the binomial distribution in (B.148) verify that the given basic moments are
correct, i.e., E[Fk] = Nπk and Var[Fk] = Nπk(1− πk) for k = 1 : 2.

22. Show that W(0+) = 0 with probability one by showing that φW(0+)(w)
gen= δ(w),

i.e., in the generalized sense, which means that

E[f (W(t))] =
∫ +∞

∞
φW(t)(w)f (w)dw → f (0+)

as t → 0+ for continuous, continuously differentiable, and sufficiently bounded
functions f (w) which vanish at infinity.
(Hint: For formal justification, scale t out of the density by a change of variables
in the integral and expand f for small t , assuming that the exponential convergence
property of the normal density allows termwise integration of the expansion. Note
that X(t) is in the set S with probability one simply means that Prob[X(t) ∈ S] = 1.
If more rigor is desired, use the asymptotic techniques, such as Laplace’s method for
integrals (B.153) on p. B51 from the text and Exercise 23.)

23. Asymptotic analysis, generalized function problem:
Show that the following sequences for the approximate right-continuous step function
HR(x) in (B.169) and the right-continuous delta function δR(x) in (B.171),

HR,n(x) =
∫ x

−∞
δR,n(y)dy,

δR,n(x) ≡ e−(y+µn)
2/(2εn)/

√
2πεn,

are valid where εn > 0, µn > 0,
√

εn � µn � 1 when n % 1. That is, show for
n% 1 that HR,n(0) = HR,n(0+) ∼ 1, HR,n(0−)→ 0+, and∫ +∞

−∞
f (y)δR,n(y − x)dy ∼ f (x−)



n16 book
2011/5/27
page B74

�

�

�

�

�

�

�

�

B74 Online Appendix B. Preliminaries in Probability and Analysis

for any continuous function f (x) that is exponentially bounded, |f (x)| ≤ Ke−a|x|
on (−∞,+∞) with a > 0 and K > 0, justifying the use of HR,n(x) → HR(x) and
δR,n(x)→ δR(x) as n→∞ for the generalized representation of Poisson processes.
(Hint: When using the Laplace asymptotic approximation of integrals technique
[61, 28], change variables to ξ = y−x+µn, select the integral tail-cutoff (−ρn, ρn)

in ξ about the argument of the maximum of δR,n(ξ − µn) at ξ = 0 with εn � ρ2
n �

µn � 1 so that the tails are exponentially negligible being dominated by the factor
exp(−ρ2

n/(2εn)), approximate f (x − µn + ξ) ∼ f (x − µn) using continuity, and
then change variables to η = ξ/

√
εn so that the limits of integration can be expanded

to ±∞. The order in which these approximations are performed is critical.)
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