Contents

Preface

1 Introduction to Feedback Control

1.1 Introduction 1
1.2 Historical Background 3
1.3 Structure of the Book 4
1.4 A Survival Guide to MATLAB 6
 1.4.1 A Brief Overview of MATLAB 6
 1.4.2 Standard MATLAB Statements and Functions 6
 1.4.3 Graphics Facilities in MATLAB 7
 1.4.4 On-Line Help Facilities in MATLAB 8
1.4.5 MATLAB Toolboxes 8
Problems 9

2 Mathematical Models of Feedback Control Systems

2.1 A Physical Modeling Example 11
2.2 The Laplace Transformation 12
2.3 Transfer Function Models 14
 2.3.1 Transfer Functions of Control Systems 14
 2.3.2 MATLAB Representations of Transfer Functions 14
 2.3.3 Transfer Function Matrices for Multivariable Systems .. 16
 2.3.4 Transfer Functions of Discrete-Time Systems 16
2.4 Other Mathematical Model Representations 17
 2.4.1 State Space Modeling 17
 2.4.2 Zero-Pole-Gain Description 19
2.5 Modeling of Interconnected Block Diagrams 20
 2.5.1 Series Connection 20
 2.5.2 Parallel Connection 20
 2.5.3 Feedback Connection 21
 2.5.4 More Complicated Connections 22
2.6 Conversion Between Different Model Objects 24
 2.6.1 Conversion to Transfer Functions 25
 2.6.2 Conversion to Zero-Pole-Gain Models 26
 2.6.3 State Space Realization 27

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.
2.6.4 Conversion Between Continuous and Discrete-Time Models 34
2.7 An Introduction to System Identification 35
 2.7.1 Identification of Discrete-Time Systems 35
 2.7.2 Order Selections ... 40
 2.7.3 Generation of Identification Signals 41
 2.7.4 Identification of Multivariable Systems 44

Problems .. 45

3 Analysis of Linear Control Systems 51
 3.1 Properties of Linear Control Systems 52
 3.1.1 Stability Analysis 52
 3.1.2 Controllability and Observability Analysis 55
 3.1.3 Kalman Decomposition of Linear Systems 59
 3.1.4 Time Moments and Markov Parameters 62
 3.1.5 Norm Measures of Signals and Systems 64
 3.2 Time Domain Analysis of Linear Systems 66
 3.2.1 Analytical Solutions to Linear Time Responses 66
 3.2.2 Analytical Solutions to Discrete-Time Systems 69
 3.3 Numerical Simulation of Linear Systems 70
 3.3.1 Step Responses of Linear Systems 70
 3.3.2 Impulse Responses of Linear Systems 75
 3.3.3 Time Responses to Arbitrary Inputs 76
 3.4 Root Locus of Linear Systems 78
 3.5 Frequency Domain Analysis of Linear Systems 84
 3.5.1 Frequency Domain Graphs with MATLAB 84
 3.5.2 Stability Analysis Using Frequency Domain Methods 87
 3.5.3 Gain and Phase Margins of a System 88
 3.5.4 Variations of Conventional Nyquist Plots 90
 3.6 Introduction to Model Reduction Techniques 92
 3.6.1 Padé Approximations and Routh Approximations 92
 3.6.2 Padé Approximations to Delay Terms 95
 3.6.3 Suboptimal Reduction Techniques for Systems with Delays ... 98
 3.6.4 State Space Model Reduction 101

Problems .. 103

4 Simulation Analysis of Nonlinear Systems 111
 4.1 An Introduction to Simulink 111
 4.1.1 Commonly Used Simulink Blocks 112
 4.1.2 Simulink Modeling 115
 4.1.3 Simulation Algorithms and Control Parameters 116
 4.2 Modeling of Nonlinear Systems by Examples 118
 4.3 Nonlinear Elements Modeling 126
 4.3.1 Modeling of Piecewise Linear Nonlinearities 126
 4.3.2 Limit Cycles of Nonlinear Systems 130
 4.4 Linearization of Nonlinear Models 131

Problems .. 135
Contents

5 Model-Based Controller Design

- 5.1 Cascade Lead-Lag Compensator Design 142
 - 5.1.1 Introduction to Lead-Lag Synthesis 142
 - 5.1.2 Lead-Lag Synthesis by Phase Margin Assignment 148
- 5.2 Linear Quadratic Optimal Control .. 153
 - 5.2.1 Linear Quadratic Optimal Control Strategies 153
 - 5.2.2 Linear Quadratic Regulator Problems 154
 - 5.2.3 Linear Quadratic Control for Discrete-Time Systems 157
 - 5.2.4 Selection of Weighting Matrices 158
 - 5.2.5 Observers and Observer Design 161
 - 5.2.6 State Feedback and Observer-Based Controllers 164
- 5.3 Pole Placement Design ... 167
 - 5.3.1 The Bass–Gura Algorithm .. 168
 - 5.3.2 Ackermann’s Algorithm .. 169
 - 5.3.3 Numerically Robust Pole Placement Algorithm 169
 - 5.3.4 Observer Design Using the Pole Placement Technique 171
 - 5.3.5 Observer-Based Controller Design Using the Pole Placement Technique .. 171
- 5.4 Decoupling Control of Multivariable Systems 173
 - 5.4.1 Decoupling Control with State Feedback 173
 - 5.4.2 Pole Placement of Decoupling Systems with State Feedback ... 175
- 5.5 SISOTool: An Interactive Controller Design Tool 177
 - Problems .. 180

6 PID Controller Design

- 6.1 Introduction .. 184
 - 6.1.1 The PID Actions ... 184
 - 6.1.2 PID Control with Derivative in the Feedback Loop 186
- 6.2 Ziegler–Nichols Tuning Formula .. 187
 - 6.2.1 Empirical Ziegler–Nichols Tuning Formula 187
 - 6.2.2 Derivative Action in the Feedback Path 191
 - 6.2.3 Methods for First-Order Plus Dead Time Model Fitting 193
 - 6.2.4 A Modified Ziegler–Nichols Formula 196
- 6.3 Other PID Controller Tuning Formulae 199
 - 6.3.1 Chien–Hrones–Reswick PID Tuning Algorithm 199
 - 6.3.2 Cohen–Coon Tuning Algorithm 200
 - 6.3.3 Refined Ziegler–Nichols Tuning 202
 - 6.3.4 The Wang–Juang–Chan Tuning Formula 205
 - 6.3.5 Optimum PID Controller Design 205
- 6.4 PID Controller Tuning Algorithms for Other Types of Plants 212
 - 6.4.1 PD and PID Parameter Setting for IPDT Models 212
 - 6.4.2 PD and PID Parameters for FOIPDT Models 213
 - 6.4.3 PID Parameter Settings for Unstable FOPDT Models 215
- 6.5 PID_Tuner: A PID Controller Design Program for FOPDT Models .. 215
- 6.6 Optimal Controller Design ... 218
 - 6.6.1 Solutions to Optimization Problems with MATLAB 218
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.2</td>
<td>Optimal Controller Design</td>
<td>220</td>
</tr>
<tr>
<td>6.6.3</td>
<td>A MATLAB/Simulink-Based Optimal Controller Designer and Its Applications</td>
<td>223</td>
</tr>
<tr>
<td>6.7</td>
<td>More Topics on PID Control</td>
<td>227</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Integral Windup and Anti-Windup PID Controllers</td>
<td>227</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Automatic Tuning of PID Controllers</td>
<td>229</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Control Strategy Selections</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>233</td>
</tr>
<tr>
<td>7</td>
<td>Robust Control Systems Design</td>
<td>237</td>
</tr>
<tr>
<td>7.1</td>
<td>Linear Quadratic Gaussian Control</td>
<td>238</td>
</tr>
<tr>
<td>7.1.1</td>
<td>LQG Problem</td>
<td>238</td>
</tr>
<tr>
<td>7.1.2</td>
<td>LQG Problem Solutions Using MATLAB</td>
<td>238</td>
</tr>
<tr>
<td>7.1.3</td>
<td>LQG with Loop Transfer Recovery</td>
<td>243</td>
</tr>
<tr>
<td>7.2</td>
<td>General Descriptions of the Robust Control Problems</td>
<td>249</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Small Gain Theorem</td>
<td>250</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Unstructured Uncertainties</td>
<td>250</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Robust Control Problems</td>
<td>251</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Model Representation Under MATLAB</td>
<td>252</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Dealing with Poles on an Imaginary Axis</td>
<td>253</td>
</tr>
<tr>
<td>7.3</td>
<td>H_{∞} Controller Design</td>
<td>255</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Augmentations of the Model with Weighting Functions</td>
<td>255</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Model Augmentation with Weighting Function Under MATLAB</td>
<td>257</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Weighted Sensitivity Problems: A Simple Case</td>
<td>258</td>
</tr>
<tr>
<td>7.3.4</td>
<td>H_{∞} Controller Design: The General Case</td>
<td>264</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Optimal H_{∞} Controller Design</td>
<td>269</td>
</tr>
<tr>
<td>7.4</td>
<td>Optimal H_2 Controller Design</td>
<td>273</td>
</tr>
<tr>
<td>7.5</td>
<td>The Effects of Weighting Functions in H_{∞} Control</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>283</td>
</tr>
<tr>
<td>8</td>
<td>Fractional-Order Controller: An Introduction</td>
<td>285</td>
</tr>
<tr>
<td>8.1</td>
<td>Fractional-Order Calculus and Its Computations</td>
<td>286</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Definitions of Fractional-Order Calculus</td>
<td>287</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Properties of Fractional-Order Differentiations</td>
<td>288</td>
</tr>
<tr>
<td>8.2</td>
<td>Frequency and Time Domain Analysis of Fractional-Order Linear Systems</td>
<td>289</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Fractional-Order Transfer Function Modeling</td>
<td>289</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Interconnections of Fractional-Order Blocks</td>
<td>290</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Frequency Domain Analysis of Linear Fractional-Order Systems</td>
<td>291</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Time Domain Analysis of Fractional-Order Systems</td>
<td>292</td>
</tr>
<tr>
<td>8.3</td>
<td>Filter Approximation to Fractional-Order Differentiations</td>
<td>294</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Oustaloup’s Recursive Filter</td>
<td>294</td>
</tr>
<tr>
<td>8.3.2</td>
<td>A Refined Oustaloup Filter</td>
<td>296</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Simulink-Based Fractional-Order Nonlinear Differential Equation Solutions</td>
<td>298</td>
</tr>
<tr>
<td>8.4</td>
<td>Model Reduction Techniques for Fractional-Order Systems</td>
<td>300</td>
</tr>
<tr>
<td>8.5</td>
<td>Controller Design Studies for Fractional-Order Systems</td>
<td>302</td>
</tr>
</tbody>
</table>