Contents

Preface xi

1 Probability Theory 1
 1.1 Probability Theory as a Set of Outcomes 1
 1.2 Set Theory ... 6
 1.3 Probability Space and the Probability Measure 8
 1.4 Algebras of Sets and Probability Space 9
 1.5 Key Concepts in Probability Theory 13
 1.6 Exercises 18

2 Random Variables and Stochastic Processes 25
 2.1 Random Variables 25
 2.2 Probability Distribution Function 28
 2.3 Probability Density Function 31
 2.4 Probabilistic Concepts Applied to Random Variables 35
 2.5 Functions of a Random Variable 37
 2.6 Expectations and Moments of a Random Variable 40
 2.7 Characteristic Functions 46
 2.8 Conditional Expectations and Conditional Probabilities 53
 2.9 Stochastic Processes 59
 2.10 Gauss–Markov Processes 63
 2.11 Nonlinear Stochastic Difference Equations 65
 2.12 Exercises 66

3 Conditional Expectations and Discrete-Time Kalman Filtering 81
 3.1 Minimum Variance Estimation 81
 3.2 Conditional Estimate of a Gaussian Random Vector with Additive Gaussian Noise .. 88
 3.2.1 Simplification of the Argument of the Exponential 90
 3.2.2 Simplification of the Coefficient of the Exponential 91
 3.2.3 Processing Measurements Sequentially 91
 3.2.4 Statistical Independence of the Error and the Estimate 93
 3.3 Maximum Likelihood Estimation 94
 3.4 The Discrete-Time Kalman Filter: Conditional Mean Estimator 95
3.5 “Tuning” a Kalman Filter 106
3.6 Discrete-Time Nonlinear Filtering 109
 3.6.1 Dynamic Propagation 110
 3.6.2 Measurement Update 110
3.7 Exercises ... 111

4 Least Squares, the Orthogonal Projection Lemma, and Discrete-Time Kalman Filtering 119
 4.1 Linear Least Squares 119
 4.2 The Orthogonal Projection Lemma 129
 4.3 Extensions of Least Squares Theory 134
 4.4 Nonlinear Least Squares: Newton–Gauss Iteration 136
 4.5 Deriving the Kalman Filter via the Orthogonal Projection Lemma . 140
 4.6 Exercises ... 145

5 Stochastic Processes and Stochastic Calculus 153
 5.1 Random Walk and Brownian Motion 153
 5.2 Mean-Square Calculus 160
 5.3 Wiener Integrals 168
 5.4 Itô Integrals ... 171
 5.5 Second-Order Itô Integrals 178
 5.6 Stochastic Differential Equations and Exponentials 180
 5.7 The Itô Stochastic Differential 182
 5.8 Continuous-Time Gauss–Markov Processes 186
 5.9 Propagation of the Probability Density Function 190
 5.10 Exercises ... 192

 6.1 The Continuous-Time Kalman Filter (Kalman–Bucy Filter) 197
 6.2 Properties of the Continuous-Time Riccati Equation 202
 6.3 Stationarity .. 204
 6.4 Power Spectral Densities 207
 6.4.1 Fourier Transforms 207
 6.4.2 Fourier Analysis Applied to Random Processes 208
 6.4.3 Ergodic Random Processes 214
 6.5 Continuous-Time Linear Systems Driven by Stationary Signals . 215
 6.6 Discrete-Time Linear Systems Driven by Stationary Random Processes 220
 6.7 The Steady-State Kalman Filter: The Wiener Filter 223
 6.7.1 The Wiener Filtering Problem Statement 223
 6.7.2 Solving the Wiener–Hopf Equation 225
 6.7.3 Noncausal Filter 226
 6.7.4 The Causal Filter 228
 6.7.5 Wiener Filtering by Orthogonal Projections 233
 6.8 Exercises ... 234
Contents

7 The Extended Kalman Filter 241
 7.1 Linearized Kalman Filtering 241
 7.1.1 Continuous-Time Theory 241
 7.1.2 Discrete-Time Version 243
 7.2 The Extended Kalman Filter 244
 7.3 The Iterative Extended Kalman Filter 245
 7.4 Filter Divergence 249
 7.4.1 What is Divergence? 249
 7.4.2 The Role of Process Noise Weighting in the Steady State 249
 7.4.3 An Analysis of Divergence 252
 7.5 Exercises ... 255

8 A Selection of Results from Estimation Theory 263
 8.1 Continuous-Time Colored-Noise Filter 263
 8.2 Optimal Smoothing and Filtering in Continuous Time 267
 8.3 Discrete-Time Smoothing and Maximum Likelihood Estimation 271
 8.4 Linear Exponential Gaussian Estimation 273
 8.4.1 The LEG Estimator and Sherman’s Theorem 273
 8.4.2 Statistical Properties of the LEG Estimator and the Kalman Filter 275
 8.5 Estimation with State-Dependent Noise 277
 8.5.1 General Theory 277
 8.5.2 Application to Phase-Lock Loops 279
 8.6 Exercises ... 284

9 Stochastic Control and the Linear Quadratic Gaussian Control Problem 289
 9.1 Dynamic Programming: An Illustration 289
 9.2 Stochastic Dynamical System 291
 9.2.1 Stochastic Control Problem with Perfect Observation 292
 9.3 Dynamic Programming Algorithm 292
 9.4 Stochastic LQ Problems with Perfect Information 295
 9.4.1 Application of the Dynamic Programming Algorithm 295
 9.5 Dynamic Programming with Partial Information 297
 9.5.1 Sufficient Statistics 299
 9.6 The Discrete-Time LQG Problem with Partial Information 300
 9.6.1 The Discrete-Time LQG Solution 300
 9.6.2 Insights into the Partial Information, Discrete-Time LQG Solution 304
 9.6.3 Stability Properties of the LQG Controller with Partial Information 305
 9.7 The Continuous-Time LQG Problem 305
 9.7.1 Dynamic Programming for Continuous-Time Markov Processes 305
 9.7.2 The LQG Problem with Complete Information 307
 9.7.3 LQ Problem with State- and Control-Dependent Noise 309
 9.7.4 The LQG Problem with Partial Information 310
Contents

9.8 Stationary Optimal Control ... 317
 9.8.1 General Conditions ... 317
 9.8.2 The Stationary LQG Controller 320
9.9 LQG Control with Loop Transfer Recovery 321
 9.9.1 The Guaranteed Gain Margins of LQ Optimal Controllers 322
 9.9.2 Deriving the LQG/LTR Controller 326
9.10 Exercises .. 330

10 Linear Exponential Gaussian Control and Estimation 335
 10.1 Discrete-Time LEG Control 335
 10.1.1 Formulation of the LEG Problem 335
 10.1.2 Solution Methodology and Properties of the LEG Problem ... 336
 10.1.3 LEG Controller Solution 341
 10.1.4 The LEG Estimator ... 351
 10.2 Terminal Guidance: A Special Continuous-Time LEG Problem 355
 10.3 Continuous-Time LEG Control 362
 10.4 LEG Controllers and H_∞ 364
 10.4.1 The LEG Controller and Its Relationship with the Disturbance Attenuation Problem 365
 10.4.2 The Time-Invariant LEG Estimator Transformed into the H_∞ Estimator ... 366
 10.4.3 The H_∞ Measure and the H_∞ Robustness Bound ... 368
 10.4.4 The Time-Invariant, Infinite-Time LEG Controller and Its Relationship with H_∞ 369
 10.4.5 Example ... 371
 10.5 Exercises .. 372
Appendix A. Proof of Lemma 10.1 373
Appendix B. Proof of Lemma 10.2 374

Bibliography ... 377

Index .. 381