3.3 Quadratic Conditions in the Problem with Mixed Control-State Equality Constraints on a Variable Time Interval 150
3.4 Quadratic Conditions for Optimal Control Problems with Mixed Control-State Equality and Inequality Constraints 164

4 Jacobi-Type Conditions and Riccati Equation for Broken Extremals 183
4.1 Jacobi-Type Conditions and Riccati Equation for Broken Extremals in the Simplest Problem of the Calculus of Variations 183
4.2 Riccati Equation for Broken Extremal in the General Problem of the Calculus of Variations .. 214

II Second-Order Optimality Conditions in Optimal Bang-Bang Control Problems 221

5 Second-Order Optimality Conditions in Optimal Control Problems Linear in a Part of Controls 223
5.1 Quadratic Optimality Conditions in the Problem on a Fixed Time Interval ... 223
5.2 Quadratic Optimality Conditions in the Problem on a Variable Time Interval ... 237
5.3 Riccati Approach ... 245
5.4 Numerical Example: Optimal Control of Production and Maintenance ... 248

6 Second-Order Optimality Conditions for Bang-Bang Control 255
6.1 Bang-Bang Control Problems on Nonfixed Time Intervals 255
6.2 Quadratic Necessary and Sufficient Optimality Conditions 259
6.3 Sufficient Conditions for Positive Definiteness of the Quadratic Form \(\Omega \) on the Critical Cone \(\mathcal{K} \) 266
6.4 Example: Minimal Fuel Consumption of a Car 272
6.5 Quadratic Optimality Conditions in Time-Optimal Bang-Bang Control Problems ... 274
6.6 Sufficient Conditions for Positive Definiteness of the Quadratic Form \(\Omega \) on the Critical Subspace \(\mathcal{K} \) for Time-Optimal Control Problems .. 281
6.7 Numerical Examples of Time-Optimal Control Problems 286
6.8 Time-Optimal Control Problems for Linear Systems with Constant Entries ... 293

7 Bang-Bang Control Problem and Its Induced Optimization Problem 299
7.1 Main Results ... 299
7.2 First-Order Derivatives of \(x(t_f; t_0, x_0, \theta) \) with Respect to \(t_0, t_f, x_0, \) and \(\theta \). Lagrange Multipliers and Critical Cones 305
7.3 Second-Order Derivatives of \(x(t_f; t_0, x_0, \theta) \) with Respect to \(t_0, t_f, x_0, \) and \(\theta \) ... 310
7.4 Explicit Representation of the Quadratic Form for the Induced Optimization Problem ... 319
Contents

7.5 Equivalence of the Quadratic Forms in the Basic and Induced Optimization Problem 333

8 Numerical Methods for Solving the Induced Optimization Problem and Applications 339

8.1 The Arc-Parametrization Method ... 339
8.2 Time-Optimal Control of the Rayleigh Equation Revisited 344
8.3 Time-Optimal Control of a Two-Link Robot 346
8.4 Time-Optimal Control of a Single Mode Semiconductor Laser 353
8.5 Optimal Control of a Batch-Reactor .. 357
8.6 Optimal Production and Maintenance with L^1-Functional 361
8.7 Van der Pol Oscillator with Bang-Singular Control 365

Bibliography 367

Index 377