Preface to the First Edition

The interconnection between two (or more) physical systems is always accompanied by *transfer* phenomena (material, energy, information), such as *transport* and *propagation*. Mathematically speaking, transport and propagation phenomena can be represented by *delay elements*. In this way the corresponding overall systems are governed by a special type of differential equations, namely *delay-differential equations (DDEs)*.

DDEs are also used in modeling various other phenomena coming from biosciences (heredity in population dynamics [202, 223]), chemistry (behaviors in chemical kinetics [367, 334]), or economics (dynamics of business cycles [368]). Further examples in engineering can be found in [359, 290, 130].

As mentioned by El'sgol’ts and Norkin [97] or Răsvan [335], time-delay systems have a long history and, to the best of our knowledge, the first DDEs are encountered in the work of Bernoulli and Condorcet. However, the theory started to be developed in the second half of the 20th century with the work of the East European mathematical school—Myshkis [286], Krasovskii [200], and Halanay [145] (to cite only a few)—who devoted most attention to the extension of the Lyapunov theory to such class of differential equations. In the 1960s, an increasing interest in the topic appeared also in North America as confirmed by the monographs of Pinney [326] and Bellman and Cooke [23], the first one almost forgotten, with a particular interest in the complex-domain approach and related frequency-domain techniques and methods. Next, the theory arrived to some degree of maturity in the 1970s as proven by the publications and the monographs devoted to the field in that period. Among them, we mention the pioneering work of Hale [148] (the second edition of the monograph published in 1971), which is one of the most cited references in the field not only for its fundamental results and approaches, but also for its quality and clarity of presentation. For further references and a deeper historical perspective, we refer the reader to [290, 332, 304].

It is important to point out that various references devoted to time-delay systems in engineering existed even before the 1950s (for example, the papers co-authored by Callender [61, 62] and the editors of the journal *Engineer* [357]), with some contradictory conclusions concerning the effects induced by the delay presence in dynamical systems: sometimes *destabilizing* (mainly by using “huge” gains), and sometimes *stabilizing* (mainly in controlling some oscillatory modes). The explanation of such “dichotomic” behaviors was done case by case, without any attempt at a comprehensive explanation of the situations where stabilizing/destabilizing effects may occur.

Although by now the fundamental results in the theory of functional differential equations (FDEs) are well known and well understood (see, for instance, [23, 148, 151], to cite only a few), the increasing number of applications involving large-scale systems with corresponding complex decision making strategies in which the *delay* (transport, propagation, communication, decision) becomes a “critical” parameter made the development of efficient numerical algorithms and methods for evaluating critical delays and related sta-
bility/instability properties necessary. This monograph presents some approaches and techniques in this sense.

Recent approaches in robust control opened interesting perspectives and issues in dealing with delays in dynamical systems, where delays are eventually treated as uncertainty [130, 290, 32]. Some of them (frequency-sweeping tests, matrix pencil approaches) will be largely discussed in this monograph. Such interpretations of delays as uncertainty are at the origin of an abundant literature in the control area. The corresponding results are expressed in terms of solutions of appropriate Riccati equations [225], linear matrix inequalities [32] in connection or not with the \(\mu \)-formalism. An exhaustive overview concerning these approaches in the context of stability analysis can be found in [290].

At the same time the increasing number of efficient algorithms for dealing with nonlinear eigenvalue problems [237] represented another important issue in treating delay systems. As in the finite-dimensional case, essential properties of time-delay systems (asymptotic behavior, stability, instability, oscillations) are connected with the spectrum location of the corresponding linearized systems. As we shall explain in the following chapters, time-delay systems are infinite-dimensional systems, but with particular spectral properties. Such properties will be explicitly exploited in deriving the main (stability and stabilization) results and related algorithms. In this context, particular attention will be paid to the distinction between retarded and neutral systems because, although both belong to the class of time-delay systems, their spectral properties are distinct. Most of the approaches presented in this book concern retarded delay systems, yet they can be easily extended to the neutral case.

It is important to point out that, excepting the FDEs based representation, there are several ways to represent time-delay systems—as evolution equations over abstract spaces [25] (infinite-dimensional setting), 2-D systems [215], systems over rings of operators [184], and behavioral based representations [120]. Throughout this volume, we have adopted the FDE based representation. We further assume that the nominal models are completely known. In other words, we do not focus on delay modeling, identification, or identifiability.

Book outline and content

Our intention is to present the stability analysis and synthesis by delayed (state and output) feedback in the linear case by using a unitary methodology: the eigenvalue based approach. Without any loss of generality we mainly concentrate on the following aspects that, to our best knowledge, have not received a full treatment in the literature:

(a) sensitivity analysis with respect to delays and to other systems’ parameters (continuity of the spectrum with respect to the parameters based on Rouché-type theorems and variants, pseudospectra, and related properties);

(b) pole placement strategies in stabilization and (nonlinear) optimization of the spectral abscissa function or robustness indicators. Although such approaches are rather classical in the finite-dimensional case, the extensions to delay systems need some special treatment due to the infinite-dimensional nature of the system. However, the particular spectral properties will be helpful to perform such control strategies in both the retarded and the neutral cases, with some precautions in the latter case.

Many examples complete the presentation and illustrate the main results proposed in the monograph. Most of the major ideas are explained by using (several) extremely simple, easy-to-follow (low-order) examples. Finally, the last part of the monograph is devoted
to several applications spanning various fields from engineering to biology. All the applications considered start from some generic remarks on the way in which the models are derived, but without any deep discussions on the model derivation and its limitations. The choice of the applications was mainly explained by their impact in engineering, biosciences, and related fields, but also by our own interest in the corresponding topics.

How to read the book?

The book is organized in three parts:

(a) Stability and robust stability. This part deals with the analysis of linear time-delay systems from a stability point of view. It starts with an overview of spectral properties of both retarded and neutral systems. To make the fundamental results apparent, eigenvalue plots are used extensively throughout the text. Then the robustness of stability and related problems are studied using pseudospectra and related quantities such as stability radii. The next three chapters deal with the characterization of stability regions in parameter spaces, both qualitatively (shape of regions, etc.) and quantitatively (explicit computational algorithms). Finally, extensions of the presented results for systems with constant parameters to systems with periodically varying parameters are briefly discussed.

(b) Stabilization and robust stabilization. The second part is devoted to the synthesis problems that correspond to the analysis problems treated in the first part, with the focus on stabilization. The first chapter is devoted to an eigenvalue based stabilization approach that is inspired by the classical pole placement method for systems without delay. Next, a numerical case study is presented to illustrate how delays in the control loop affect the stabilizability with state feedback. The following chapter is devoted to the robust stabilization problem, and corresponds to the chapter on pseudospectra presented in the first part. Finally, a new stabilization approach is presented which is based on recently developed methods for nonsmooth optimization.

(c) Applications. A wide class of applications is presented, from congestion analysis in high-performance networks to output feedback stabilization and the analysis of predictor-type controllers, from consensus problems in traffic flows to the stability analysis of various delay models in biosciences. We tried to achieve the right correlation between the theory presented in the first two parts of the monograph and the applications which we consider. In some cases, we present several alternative approaches handling the same stability analysis or control problem.

It is important to point out that we have made the parts independent of each other as much as possible. However, a number of fundamental results are needed for the whole theoretical development; these are presented in the first chapter of the monograph. Since such results can be found in excellent references devoted to the theory of FDEs, we decided to only mention them here, and to pay more attention to some particular approaches and related methodologies that have not received full attention in the literature, such as the sensitivity analysis (to cite only one approach).

Acknowledgments

The idea of writing this monograph appeared a couple of years ago, but, as usual, the delay factor interfered with the whole process. However, we believe that, finally, the delay had a positive impact.
We greatly acknowledge the financial support of the Belgian research projects IAP P5, Dynamical Systems and Control: Computation, Identification and Modeling, and IAP P6, DYSCO (Dynamical Systems, Control and Optimization), funded by the program on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture, of the Center of Excellence on Optimization in Engineering of the K.U. Leuven, of the Fund for Scientific Research—Flanders, from which WM received a postdoctoral fellowship in the period of writing of the book, and of the French CNRS (National Center for Scientific Research), which covered in part the traveling between Belgium and France in the period 2002–2006. Starting with 2006, a bilateral French–Flemish collaboration project (Tournesol in 2006, and H. Curien in 2007), entitled Distributed delays in dynamical systems: Analysis and applications, helped us to continue and to finish the monograph.

Parts of the book have been presented at the European graduate school FAP (Formation d’Automatique à Paris) in the framework of the CTS (Control Training Site) in Automatic Control in 2005 and 2006. The students’ feedback was constructive and helped us to reorganize some material and to present results from a different point of view.

We are grateful to ELIZABETH GREENSPAN from SIAM, Philadelphia, for her help and patience during the preparation of the manuscript.

We would like to thank our friends and past and present collaborators, who implicitly or explicitly made a significant contribution to the research results presented in the book. Among them, we mention DIRK ROOSE, TATYANA LUZYANINA, STEFAN VANDEWALLE, JORIS VANBIERVLIET, KOEN VERHEIDEN (K.U. Leuven, Belgium), KOEN ENGELBOGHS (Materialise, Belgium), PATRICK VANSEVENANT (TVH, Belgium), VINCENT VAN ASSCHE (Université de Picardie, Soissons, France), KURT LUST (Rijksuniversiteit Groningen, The Netherlands), THOMAS PLOMTEUX (BASF, Belgium), LUC MOREAU (SIDMAR, Belgium), DIRK AYELELS (Universiteit Gent, Belgium), RODOLPHE SEPULCHRE (Université de Liège, Belgium), DENIS DOCHAIN (Université Catholique de Louvain, Belgium), ABHIJIT GANGULI (Université Libre de Bruxelles, Belgium), FABIEN CHATTÉ (NEOPOST, France), SABINE MONDIÉ, VLADIMIR KHRITONOV (CINVESTAV-IPN, Mexico), JAIME MORENO (UNAM, Mexico), TOMÁŠ VYHLÍDAL (Czech Technical University at Prague, the Czech Republic), ERIK I. VERRIEST (Georgia Institute of Technology, USA), JEAN PIERRE RICHARD (École Centrale de Lille, France), MICHEL DAMBRINE (Université de Valenciennes, France), FRÉDÉRIC MAZENC (INRA Montpellier, France), DANIEL MELCHOR AGUILAR (IPICYT at San Luis Potosí, Mexico), CHAOUKI T. ABDALLAH (University of New Mexico at Albuquerque, USA), KIRK GREEN (Vrije Universiteit Amsterdam, The Netherlands), THOMAS WAGENKNECHT (University of Manchester, UK), SONDIPON ADHIKARI (University of Bristol, UK), HENK NIJMEIJER (T.U. Eindhoven), HENRI HUIJBERTS (Queen Mary University of London, UK), VLADIMIR RĂSVAN (University of Craiova, Romania), KEQIN GU (Southern Illinois University at Edwardsville, USA), JIE CHEN, PEILIN FU (University of California at Riverside, USA), RIFAT SIPAHİ (Northeastern University at Boston, USA), CONSTANTIN-IRinel MORĂRESCU (University “Politehnica” at Bucharest, Romania), QIANG-ZHONG ZHONG (University of Liverpool, UK), DORON LEVY, PETER S. KIM (Stanford University, USA), and ROGELIO LOzano (CNRS, Compiègne, France).

Last but not least WM would like to thank BARBARA for the extremely nice time they had together and for her patience in the busy period of finishing the book (mpf, ik zie je graag!). He is also thankful to his parents, family, and friends for creating a nice atmosphere and for all the support. Concerning SIN, there is a special person in his life, LAURA, to whom he owes the exceptional support that she gave to Silviu to overcome
Preface to the First Edition

all the difficulties both professional and extra-professional in the last fifteen years. We dedicate this monograph to all of them, in love and gratitude.

Leuven, Belgium, January 2007 WIM MICHELS
Gif-sur-Yvette, France, January 2007 SILVIU-IULIAN NICULESCU