Origin of the Finite Element Method

G. Strang and G. Fix:
„... Surely Argyris in Germany and England, and Martin and Clough in America, were among those responsible; we dare not guess who was first. ...“
Origin of the Finite Element Method

G. Strang and G. Fix:
„„. . . Surely Argyris in Germany and England, and Martin and Clough in America, were among those responsible; we dare not guess who was first.
. . . “

J.H. Argyris:

M. J. Turner, R. W. Clough, H. C. Martin, and L. C. Topp:
Origin of the Finite Element Method

G. Strang and G. Fix:
„... Surely Argyris in Germany and England, and Martin and Clough in America, were among those responsible; we dare not guess who was first. ...

J.H. Argyris:
M. J. Turner, R. W. Clough, H. C. Martin, and L. C. Topp:

earlier theoretical papers:
R. Courant 1943, B.G. Galerkin 1915, Ritz 1908, J. W. S. Rayleigh 1870
Origin of the Finite Element Method

G. Strang and G. Fix:
"... Surely Argyris in Germany and England, and Martin and Clough in America, were among those responsible; we dare not guess who was first."

J.H. Argyris:

M. J. Turner, R. W. Clough, H. C. Martin, and L. C. Topp:

earlier theoretical papers:
R. Courant 1943, B.G. Galerkin 1915, Ritz 1908, J. W. S. Rayleigh 1870
→ (Rayleigh –) Ritz – Galerkin Method
Literature

- google: > 10000000 pages
Literature

- google: > 10000000 pages
- www.web-spline.de (K. Höllig, U. Reif, J. Wipper)
 → papers, dissertations, masters theses
Literature

- google: > 10000000 pages
- www.web-spline.de (K. Höllig, U. Reif, J. Wipper)
 → papers, dissertations, masters theses

...
Literature

- google: > 10000000 pages
- www.web-spline.de (K. Höllig, U. Reif, J. Wipper) → papers, dissertations, masters theses
Literature

- google: > 10000000 pages
- www.web-spline.de (K. Höllig, U. Reif, J. Wipper) → papers, dissertations, masters theses
Literature

- google: > 10000000 pages
- www.web-spline.de (K. Höllig, U. Reif, J. Wipper) → papers, dissertations, masters theses
- ...
Literature

- google: > 10000000 pages
- www.web-spline.de (K. Höllig, U. Reif, J. Wipper) → papers, dissertations, masters theses
- ...

related method, using b-splines:
J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis, John Wiley & Sons Ltd., 2009.
History of Finite Elements and Splines

Engineering

Turner, Clough, Martin, and Topp (1956)
Argyris (1960)
Clough (1960)

de Casteljau (1959)
Bezier (1966)

FEM

Rayleigh (1870)
Ritz (1908)
Galerkin (1915)
Courant (1943)
Strang and Fix (1973)

Splines

Schoenberg (1946)
de Boor (1972)

Mathematics
Splines as Finite Elements

grid with inner and outer B-splines
principal difficulties

- essential boundary conditions

\[\sum_{k} u_k b_k = 0 \text{ on } \partial D \implies u_k = 0, \ k \sim \partial D \]

\[\implies \text{ poor approximation order} \]
principal difficulties

- essential boundary conditions

\[\sum_{k} u_k b_k = 0 \text{ on } \partial D \implies u_k = 0, \ k \sim \partial D \]

\[\leadsto \text{poor approximation order} \]

- stability

\[\| c_k \| \not\leq \| \sum_{k} c_k b_k \| \quad (h \to 0) \]

\[\leadsto \text{ill-conditioned systems, slow convergence of iterative schemes} \]
Weighted Extended B-Splines

homogeneous boundary conditions, modeled with a weight function

\[b_k \rightarrow wb_k, \quad k \in K \]

suggested by Kantorovich and Krylow, studied by Rvachev
Weighted Extended B-Splines

homogeneous boundary conditions, modeled with a weight function

\[b_k \rightarrow wb_k, \quad k \in K \]

suggested by Kantorovich and Krylow, studied by Rvachev

stabilization via extension of inner B-splines

\[b_i \rightarrow b_i + \sum_{j \in J(i)} e_{i,j} b_j, \quad i \in I \]

based on Marsden’s identity
Weighted Extended B-Splines

homogeneous boundary conditions, modeled with a weight function

\[b_k \rightarrow w b_k, \quad k \in K \]

suggested by Kantorovich and Krylow, studied by Rvachev stabilization via extension of inner B-splines

\[b_i \rightarrow b_i + \sum_{j \in J(i)} e_{i,j} b_j, \quad i \in I \]

based on Marsden’s identity

\[\leadsto \text{weighted extended B-splines (web-splines)} \]

\[B_i = \gamma_i w \left(b_i + \sum_{j \in J(i)} e_{i,j} b_j \right) \]

with standard properties of finite elements
Advantages of WEB-Splines

flexibility of mesh-based elements and computational efficiency of B-splines
Advantages of WEB-Splines

flexibility of mesh-based elements and computational efficiency of B-splines

- meshless method
Advantages of WEB-Splines

flexibility of mesh-based elements and computational efficiency of B-splines

- meshless method
- uniform grid
Advantages of WEB-Splines

flexibility of mesh-based elements and computational efficiency of B-splines

- meshless method
- uniform grid
- exact fulfilment of boundary conditions
Advantages of WEB-Splines

flexibility of mesh-based elements and computational efficiency of B-splines

- meshless method
- uniform grid
- exact fulfilment of boundary conditions
- simple parallelization and efficient multigrid techniques
Advantages of WEB-Splines

flexibility of mesh-based elements and computational efficiency of B-splines

- meshless method
- uniform grid
- exact fulfilment of boundary conditions
- simple parallelization and efficient multigrid techniques
- accurate approximations with relatively low-dimensional subspaces

Introduction
Advantages of WEB-Splines

flexibility of mesh-based elements and computational efficiency of B-splines

- meshless method
- uniform grid
- exact fulfilment of boundary conditions
- simple parallelization and efficient multigrid techniques
- accurate approximations with relatively low-dimensional subspaces
- arbitrary smoothness and approximation order
Advantages of WEB-Splines

- flexibility of mesh-based elements and computational efficiency of B-splines

- meshless method
- uniform grid
- exact fulfilment of boundary conditions
- simple parallelization and efficient multigrid techniques
- accurate approximations with relatively low-dimensional subspaces
- arbitrary smoothness and approximation order
- adaptive refinement via hierarchical bases
Advantages of WEB-Splines

flexibility of mesh-based elements and computational efficiency of B-splines

- meshless method
- uniform grid
- exact fulfilment of boundary conditions
- simple parallelization and efficient multigrid techniques
- accurate approximations with relatively low-dimensional subspaces
- arbitrary smoothness and approximation order
- adaptive refinement via hierarchical bases
- compatibility with CAD/CAM systems
Notation

- skipping dependencies on parameters

\[b_k = b_{k,h}^n, \ldots \]
Notation

- skipping dependencies on parameters
 \[b_k = b_{k,h}^n, \ldots \]

- constants in estimates
 \[\leq \text{const}(p_1, p_2, \ldots) \]
Notation

- skipping dependencies on parameters

\[b_k = b_{k,h}^n, \ldots \]

- constants in estimates

\[\leq \text{const}(p_1, p_2, \ldots) \]

- inequalities up to constants

\[\lesssim, \gtrsim, \asymp \]
Notation

- skipping dependencies on parameters
 \[b_k = b_{k,h}, \ldots \]

- constants in estimates
 \[\leq \text{const}(p_1, p_2, \ldots) \]

- inequalities up to constants
 \[\leq, \geq, \preccurlyeq \]

- spline approximation with coefficient vector \[U = \{ u_k \}_{k \in K} \]
 \[u \approx u_h = \sum_k u_k b_k, \]
Notation

- skipping dependencies on parameters
 \[b_k = b_{k,h}, \ldots \]

- constants in estimates
 \[\leq \text{const}(p_1, p_2, \ldots) \]

- inequalities up to constants
 \[\preceq, \succeq, \simeq \]

- spline approximation with coefficient vector \(U = \{u_k\}_{k \in K} \)
 \[u \approx u_h = \sum_k u_k b_k, \]

- vectors and matrices
 \[G = \{g_{k,i}\}_{k,i \in I} \]
 products \(UV \) without transposition