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Ritz-Galerkin System for Hat–Functions

system entries: sum contributions from each triangle τ = [pi , pj , pk ]

g`,m =
∑
τ

∫
τ

gradB` gradBm, f` =
∑
τ

∫
τ
f B`

compute gradients via directional derivatives gradBi

gradBj

gradBk


︸ ︷︷ ︸

Gτ

(
pj − pi pk − pj

)
= R, R =

 −1 0
1 −1
0 1
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G : add submatrix of

area(τ)GτG
t
τ =
| detP|

2
RP−1(Pt)−1Rt ,

corresponding to inner vertices

F : add subvector of

| detP|
6

 1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

 fi
fj
fk


corresponding to inner vertices
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Details

exact Taylor approximation for linear functions

B(q) = B(p) + gradB (q − p)︸ ︷︷ ︸
directional derivative

quadrature formula for triangle τ = [pi , pj , pk ]∫
τ
g =

area τ

3
[g((pi + pj)/2) + g((pj + pk)/2) + g((pk + pi )/2)]

exact for quadratic polynomials  error O(h5), h = diam τ
apply with g = fB` and linear interpolation of f and B`  

[. . .] = f`/2 + fm/4 + fm′/4, m,m′ 6= ` ,

since g((p` + pm)/2) = ((f` + fm)/2) ((1 + 0)/2)
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Bivariate Finite Elements

Lagrange

degree 4, ∈ C0

dimension 15

Argyris

degree 5, ∈ C1

dimension 21

Clough–Tocher

degree 3, ∈ C1

dimension 12
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Lagrange Elements

P

Q

R

nodes, labeled (i , j , k) with i + j + k = n

i

n
P +

j

n
Q +

k

n
R

basis functions

Bi ,j ,k =

(
n

i

)
u0 · · · ui−1

(
n

j

)
v0 · · · v j−1

(
n

k

)
w0 · · ·wk−1

u` linear, with u`(P) = 1 and u` = 0 on nodes (`, α, β)
(v `, w ` defined similarly)
 interpolation of Lagrange data
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Details

node

X =
i

n
P +

j

n
Q +

k

n
R

u`((n/n)P) = 1, u`((`/n)P + · · · ) = 0 =⇒

u`
(
i

n
P + · · ·

)
=

i − `
n − `

(view i as variable, ranging from ` to n)
value of u0u1 · · · ui−1 at X

i

n

i − 1

n − 1
· · · 1

n − i + 1
=

(
n

i

)−1
=⇒ Bi ,j ,k(X ) = 1
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Argyris Triangle

degree 5, ∈ C 1

dimension 21

defining data

partial derivatives of order ≤ 2 at vertices

normal derivatives at edge mid-points

=⇒ values and derivatives prescribed at triangle boundaries
(quintic and quartic polynomials, respectively)
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Clough-Tocher Macro-Triangle

degree 3, ∈ C 1

dimension 12

defining data

values and gradients at vertices

normal derivatives at edge mid-points

=⇒ values and derivatives prescribed along the outer boundaries
(cubic and quadratic polynomials, respectively)
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Properties of Finite Elements

The basis functions Bi of standard mesh-based finite element subspaces
are piecewise polynomials of degree ≤ n with support on few neighboring
mesh cells. They are at least continuous and compatible with
homogeneous boundary conditions on piecewise linear boundaries.
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Disadvantages of Standard Mesh-Based Finite Elements

principal drawbacks

Generating good meshes can be difficult, time-consuming, and might
require user interaction.

Using quadratic or higher degree leads to excessively large systems.

Only moderately accurate approximations are possible.

Boundary conditions are merely approximated for general free-form
domains.

Weighted spline-based finite elements overcome these difficulties:
No mesh generation is required, accurate smooth approximations are
possible with relatively low-dimensional finite element subspaces, and
boundary conditions are satisfied exactly.
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