Hat-Function
 defined on a triangulation of the domain D

Hat-Function

defined on a triangulation of the domain D

- $B_{i}, i \in I$: basis for piecewise linear functions

Hat-Function

defined on a triangulation of the domain D

- $B_{i}, i \in I$: basis for piecewise linear functions
- $B_{i}\left(p_{i}\right)=1,0$ at other vertices p_{j}

Hat-Function

defined on a triangulation of the domain D

- $B_{i}, i \in I$: basis for piecewise linear functions
- $B_{i}\left(p_{i}\right)=1,0$ at other vertices p_{j}

Hat-Function

defined on a triangulation of the domain D

- $B_{i}, i \in I$: basis for piecewise linear functions
- $B_{i}\left(p_{i}\right)=1,0$ at other vertices p_{j}

approximation, determined by Lagrange data

$$
u_{h}=\sum_{i \in I} u_{i} B_{i}, \quad u_{i}=u_{h}\left(p_{i}\right)
$$

Ritz-Galerkin System for Hat-Functions

 system entries: sum contributions from each triangle $\tau=\left[p_{i}, p_{j}, p_{k}\right]$$$
g_{\ell, m}=\sum_{\tau} \int_{\tau} \operatorname{grad} B_{\ell} \operatorname{grad} B_{m}, \quad f_{\ell}=\sum_{\tau} \int_{\tau} f B_{\ell}
$$

Ritz-Galerkin System for Hat-Functions

 system entries: sum contributions from each triangle $\tau=\left[p_{i}, p_{j}, p_{k}\right]$$$
g_{\ell, m}=\sum_{\tau} \int_{\tau} \operatorname{grad} B_{\ell} \operatorname{grad} B_{m}, \quad f_{\ell}=\sum_{\tau} \int_{\tau} f B_{\ell}
$$

compute gradients via directional derivatives

$$
\underbrace{\left(\begin{array}{l}
\operatorname{grad} B_{i} \\
\operatorname{grad} B_{j} \\
\operatorname{grad} B_{k}
\end{array}\right)}_{G_{\tau}}\left(\begin{array}{cc}
p_{j}-p_{i} & p_{k}-p_{j}
\end{array}\right)=R, \quad R=\left(\begin{array}{cc}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right)
$$

G : add submatrix of

$$
\operatorname{area}(\tau) G_{\tau} G_{\tau}^{t}=\frac{|\operatorname{det} P|}{2} R P^{-1}\left(P^{t}\right)^{-1} R^{t}
$$

corresponding to inner vertices
G : add submatrix of

$$
\operatorname{area}(\tau) G_{\tau} G_{\tau}^{t}=\frac{|\operatorname{det} P|}{2} R P^{-1}\left(P^{t}\right)^{-1} R^{t}
$$

corresponding to inner vertices
F : add subvector of

$$
\frac{|\operatorname{det} P|}{6}\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{c}
f_{i} \\
f_{j} \\
f_{k}
\end{array}\right)
$$

corresponding to inner vertices

Details

Details

exact Taylor approximation for linear functions

$$
B(q)=B(p)+\underbrace{\operatorname{grad} B(q-p)}_{\text {directional derivative }}
$$

Details

exact Taylor approximation for linear functions

$$
B(q)=B(p)+\underbrace{\operatorname{grad} B(q-p)}_{\text {directional derivative }}
$$

quadrature formula for triangle $\tau=\left[p_{i}, p_{j}, p_{k}\right]$

$$
\int_{\tau} g=\frac{\operatorname{area} \tau}{3}\left[g\left(\left(p_{i}+p_{j}\right) / 2\right)+g\left(\left(p_{j}+p_{k}\right) / 2\right)+g\left(\left(p_{k}+p_{i}\right) / 2\right)\right]
$$

Details

exact Taylor approximation for linear functions

$$
B(q)=B(p)+\underbrace{\operatorname{grad} B(q-p)}_{\text {directional derivative }}
$$

quadrature formula for triangle $\tau=\left[p_{i}, p_{j}, p_{k}\right]$

$$
\int_{\tau} g=\frac{\operatorname{area} \tau}{3}\left[g\left(\left(p_{i}+p_{j}\right) / 2\right)+g\left(\left(p_{j}+p_{k}\right) / 2\right)+g\left(\left(p_{k}+p_{i}\right) / 2\right)\right]
$$

exact for quadratic polynomials $\rightsquigarrow \operatorname{error} O\left(h^{5}\right), h=\operatorname{diam} \tau$

Details

exact Taylor approximation for linear functions

$$
B(q)=B(p)+\underbrace{\operatorname{grad} B(q-p)}_{\text {directional derivative }}
$$

quadrature formula for triangle $\tau=\left[p_{i}, p_{j}, p_{k}\right]$

$$
\int_{\tau} g=\frac{\operatorname{area} \tau}{3}\left[g\left(\left(p_{i}+p_{j}\right) / 2\right)+g\left(\left(p_{j}+p_{k}\right) / 2\right)+g\left(\left(p_{k}+p_{i}\right) / 2\right)\right]
$$

exact for quadratic polynomials $\rightsquigarrow \operatorname{error} O\left(h^{5}\right), h=\operatorname{diam} \tau$ apply with $g=f B_{\ell}$ and linear interpolation of f and $B_{\ell} \rightsquigarrow$

$$
[\ldots]=f_{\ell} / 2+f_{m} / 4+f_{m^{\prime}} / 4, \quad m, m^{\prime} \neq \ell
$$

since $g\left(\left(p_{\ell}+p_{m}\right) / 2\right)=\left(\left(f_{\ell}+f_{m}\right) / 2\right)((1+0) / 2)$

Bivariate Finite Elements

Lagrange Elements

nodes, labeled (i, j, k) with $i+j+k=n$

$$
\frac{i}{n} P+\frac{j}{n} Q+\frac{k}{n} R
$$

Lagrange Elements

nodes, labeled (i, j, k) with $i+j+k=n$

$$
\frac{i}{n} P+\frac{j}{n} Q+\frac{k}{n} R
$$

basis functions

$$
B_{i, j, k}=\binom{n}{i} u^{0} \cdots u^{i-1}\binom{n}{j} v^{0} \cdots v^{j-1}\binom{n}{k} w^{0} \cdots w^{k-1}
$$

Lagrange Elements

nodes, labeled (i, j, k) with $i+j+k=n$

$$
\frac{i}{n} P+\frac{j}{n} Q+\frac{k}{n} R
$$

basis functions

$$
B_{i, j, k}=\binom{n}{i} u^{0} \cdots u^{i-1}\binom{n}{j} v^{0} \cdots v^{j-1}\binom{n}{k} w^{0} \cdots w^{k-1}
$$

u^{ℓ} linear, with $u^{\ell}(P)=1$ and $u^{\ell}=0$ on nodes (ℓ, α, β)
(v^{ℓ}, w^{ℓ} defined similarly)

Lagrange Elements

nodes, labeled (i, j, k) with $i+j+k=n$

$$
\frac{i}{n} P+\frac{j}{n} Q+\frac{k}{n} R
$$

basis functions

$$
B_{i, j, k}=\binom{n}{i} u^{0} \cdots u^{i-1}\binom{n}{j} v^{0} \cdots v^{j-1}\binom{n}{k} w^{0} \cdots w^{k-1}
$$

u^{ℓ} linear, with $u^{\ell}(P)=1$ and $u^{\ell}=0$ on nodes (ℓ, α, β)
(v^{ℓ}, w^{ℓ} defined similarly)
\rightsquigarrow interpolation of Lagrange data

Details

node

$$
X=\frac{i}{n} P+\frac{j}{n} Q+\frac{k}{n} R
$$

Details

node

$$
X=\frac{i}{n} P+\frac{j}{n} Q+\frac{k}{n} R
$$

$u^{\ell}((n / n) P)=1, u^{\ell}((\ell / n) P+\cdots)=0 \Longrightarrow$

$$
u^{\ell}\left(\frac{i}{n} P+\cdots\right)=\frac{i-\ell}{n-\ell}
$$

(view i as variable, ranging from ℓ to n)

Details

node

$$
X=\frac{i}{n} P+\frac{j}{n} Q+\frac{k}{n} R
$$

$u^{\ell}((n / n) P)=1, u^{\ell}((\ell / n) P+\cdots)=0 \Longrightarrow$

$$
u^{\ell}\left(\frac{i}{n} P+\cdots\right)=\frac{i-\ell}{n-\ell}
$$

(view i as variable, ranging from ℓ to n) value of $u^{0} u^{1} \cdots u^{i-1}$ at X

$$
\frac{i}{n} \frac{i-1}{n-1} \cdots \frac{1}{n-i+1}=\binom{n}{i}^{-1}
$$

$\Longrightarrow B_{i, j, k}(X)=1$

Argyris Triangle

degree $5, \in C^{1}$ dimension 21

Argyris Triangle

$$
\begin{aligned}
& \text { degree } 5, \in C^{1} \\
& \text { dimension } 21
\end{aligned}
$$

defining data

Argyris Triangle

$$
\begin{aligned}
& \text { degree } 5, \in C^{1} \\
& \text { dimension } 21
\end{aligned}
$$

defining data

- partial derivatives of order ≤ 2 at vertices

Argyris Triangle

$$
\begin{aligned}
& \text { degree } 5, \in C^{1} \\
& \text { dimension } 21
\end{aligned}
$$

defining data

- partial derivatives of order ≤ 2 at vertices
- normal derivatives at edge mid-points

Argyris Triangle

$$
\begin{aligned}
& \text { degree } 5, \in C^{1} \\
& \text { dimension } 21
\end{aligned}
$$

defining data

- partial derivatives of order ≤ 2 at vertices
- normal derivatives at edge mid-points
\Longrightarrow values and derivatives prescribed at triangle boundaries (quintic and quartic polynomials, respectively)

Clough-Tocher Macro-Triangle

$$
\begin{aligned}
& \text { degree } 3, \in C^{1} \\
& \text { dimension } 12
\end{aligned}
$$

Clough-Tocher Macro-Triangle

> degree $3, \in C^{1}$
> dimension 12
defining data

Clough-Tocher Macro-Triangle

degree $3, \in C^{1}$
 dimension 12

defining data

- values and gradients at vertices

Clough-Tocher Macro-Triangle

> degree $3, \in C^{1}$
> dimension 12
defining data

- values and gradients at vertices
- normal derivatives at edge mid-points

Clough-Tocher Macro-Triangle

$$
\begin{aligned}
& \text { degree } 3, \in C^{1} \\
& \text { dimension } 12
\end{aligned}
$$

defining data

- values and gradients at vertices
- normal derivatives at edge mid-points
\Longrightarrow values and derivatives prescribed along the outer boundaries (cubic and quadratic polynomials, respectively)

Properties of Finite Elements

The basis functions B_{i} of standard mesh-based finite element subspaces are piecewise polynomials of degree $\leq n$ with support on few neighboring mesh cells. They are at least continuous and compatible with homogeneous boundary conditions on piecewise linear boundaries.

Disadvantages of Standard Mesh-Based Finite Elements principal drawbacks

Disadvantages of Standard Mesh-Based Finite Elements

 principal drawbacks- Generating good meshes can be difficult, time-consuming, and might require user interaction.

Disadvantages of Standard Mesh-Based Finite Elements

 principal drawbacks- Generating good meshes can be difficult, time-consuming, and might require user interaction.
- Using quadratic or higher degree leads to excessively large systems.

Disadvantages of Standard Mesh-Based Finite Elements

 principal drawbacks- Generating good meshes can be difficult, time-consuming, and might require user interaction.
- Using quadratic or higher degree leads to excessively large systems.
- Only moderately accurate approximations are possible.

Disadvantages of Standard Mesh-Based Finite Elements

 principal drawbacks- Generating good meshes can be difficult, time-consuming, and might require user interaction.
- Using quadratic or higher degree leads to excessively large systems.
- Only moderately accurate approximations are possible.
- Boundary conditions are merely approximated for general free-form domains.

Disadvantages of Standard Mesh-Based Finite Elements

 principal drawbacks- Generating good meshes can be difficult, time-consuming, and might require user interaction.
- Using quadratic or higher degree leads to excessively large systems.
- Only moderately accurate approximations are possible.
- Boundary conditions are merely approximated for general free-form domains.

Weighted spline-based finite elements overcome these difficulties:

Disadvantages of Standard Mesh-Based Finite Elements

 principal drawbacks- Generating good meshes can be difficult, time-consuming, and might require user interaction.
- Using quadratic or higher degree leads to excessively large systems.
- Only moderately accurate approximations are possible.
- Boundary conditions are merely approximated for general free-form domains.

Weighted spline-based finite elements overcome these difficulties:
No mesh generation is required, accurate smooth approximations are possible with relatively low-dimensional finite element subspaces, and boundary conditions are satisfied exactly.

