
Abstract Variational Problem

An abstract boundary value problem can be written in the form

Lu = f inD, Bu = 0 on ∂D

with a differential operator L and a boundary operator B.

Incorporating the boundary conditions in a Hilbert space H, the differential
equation usually admits a variational formulation

a(u, v) = λ(v), v ∈ H

with a bilinear form a and a linear functional λ.

This weak form of the boundary value problem is well suited for numerical
approximations, in particular because it requires less regularity. For a
differential operator of order 2m, the existence of weak derivatives up to
order m suffices.
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Ritz–Galerkin Approximation

The Ritz–Galerkin approximation uh =
∑

i uiBi ∈ Bh ⊂ H of the
variational problem

a(u, v) = λ(v), v ∈ H,

is determined by the linear system∑
i

a(Bi ,Bk) ui = λ(Bk),

which we abbreviate as GU = F .
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Example

model problem
−∆u = f inD, u = 0 on ∂D

differential and boundary operators

L = −∆, Bu = u

bilinear form and linear functional

a(u, v) =

∫
D

grad u grad v , λ(v) =

∫
D
fv

Hilbert space: H = H1
0 (D)

simple finite element subspace Bh:
piecewise linear functions on a triangulation of D
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Ellipticity

A bilinear form a on a Hilbert space H is elliptic if it is bounded and
equivalent to the norm on H, i.e., if for all u, v ∈ H

|a(u, v)| ≤ cb‖u‖‖v‖, ce‖u‖2 ≤ a(u, u)

with positive constants cb and ce .
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Example

Poisson bilinear form

a(u, v) =

∫
D

grad u grad v

Cauchy–Schwarz inequality =⇒

|a(u, v)| ≤ a(u, u)1/2 a(v , v)1/2 =

(∫
D
‖grad u‖2

)1/2(∫
D
‖grad v‖2

)1/2

≤ ‖u‖1‖v‖1

where

‖w‖1 =

(∫
D
|w |2 + ‖gradw‖2

)1/2

is the norm on H = H1
0 (D) ⊂ H1(D)

 cb = 1
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Poincaré–Friedrichs inequality =⇒∫
D
|u|2 ≤ const(D)

∫
D
‖grad u‖2, u ∈ H1

0 (D)

add
∫
D ‖grad u‖2 = a(u, u) to both sides  

‖u‖21 ≤ (const(D) + 1)

∫
D
‖grad u‖2 ,

i.e., ce = (const(D) + 1)−1
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Lax–Milgram Theorem

If a is an elliptic bilinear form and λ is a bounded linear functional on a
Hilbert space H, then the variational problem

a(u, v) = λ(v), v ∈ V ,

has a unique solution u ∈ V for any closed subspace V of H. Moreover, if
a is symmetric, the solution u can be characterized as the minimum of the
quadratic form

Q(u) =
1

2
a(u, u)− λ(u)

on V .
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Special Case

finite element approximation: V = Bh

variational problem ⇔ Ritz–Galerkin system GU = F
ellipticity of a =⇒ positive definiteness of G :

UGU =
∑
i ,k

uka(Bi ,Bk)ui = a(uh, uh) ≥ ce‖uh‖2 > 0

for uh 6= 0
existence of G−1 =⇒ unique solvability of the Ritz–Galerkin system
 part of the Lax–Milgram theorem, relevant for numerical schemes
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Proof

variational problem ⇔ identity between bounded linear functionals on V

left side
Au : v 7→ a(u, v)

bounded in view of the boundedness of a:

‖Au‖ = sup
‖v‖=1

|(Au)(v)| = sup |a(u, v)| ≤ cb‖u‖

Riesz theorem  representation for bounded linear functionals % : V → R:

%(v) = 〈R%, v〉

with 〈·, ·〉 the scalar product on V (identical to the scalar product on H)
and R an isometry onto V
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 equivalent form of the variational problem

RAu = Rλ

rewrite as fixed point equation

u = u − ωRAu︸ ︷︷ ︸
Su

+ωRλ

with ω > 0
show: S is contraction for small ω
( Banach’s fixed point theorem completes proof of first part)
estimate

‖S‖ = sup
‖u‖=1

〈u − ωRAu, u − ωRAu〉1/2

using the ellipticity of a
for ω = ce/c

2
b

〈. . . , . . .〉 = ‖u‖2 − 2ωa(u, u) + ω2‖RAu‖2 ≤ 1− 2ωce + ω2c2b < 1

since 〈RAu, u〉 = (Au)(u) = a(u, u)
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Proof (symmetric case)

symmetric elliptic bilinear form a  scalar product and equivalent norm
‖ · ‖a:

‖u‖2a = 〈u, u〉a = a(u, u) � ‖u‖2, u ∈ H

Riesz representation theorem =⇒

λ(v) = a(Rλ, v), v ∈ H

rewrite the quadratic form:

Q(u) =
1

2
a(u, u)− λ(u) =

1

2
‖u − Rλ‖2a −

1

2
‖Rλ‖2a

minimizing Q ⇔ best approximation to Rλ from V
characterization of the best approximation u,

a(u − Rλ, v) = 0, v ∈ V ,

⇔ variational equations
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