Abstract Variational Problem

An abstract boundary value problem can be written in the form

$$
\mathcal{L} u=f \text { in } D, \quad \mathcal{B} u=0 \text { on } \partial D
$$

with a differential operator \mathcal{L} and a boundary operator \mathcal{B}.

Abstract Variational Problem

An abstract boundary value problem can be written in the form

$$
\mathcal{L} u=f \text { in } D, \quad \mathcal{B} u=0 \text { on } \partial D
$$

with a differential operator \mathcal{L} and a boundary operator \mathcal{B}. Incorporating the boundary conditions in a Hilbert space H, the differential equation usually admits a variational formulation

$$
a(u, v)=\lambda(v), \quad v \in H
$$

with a bilinear form a and a linear functional λ.

Abstract Variational Problem

An abstract boundary value problem can be written in the form

$$
\mathcal{L} u=f \text { in } D, \quad \mathcal{B} u=0 \text { on } \partial D
$$

with a differential operator \mathcal{L} and a boundary operator \mathcal{B}. Incorporating the boundary conditions in a Hilbert space H, the differential equation usually admits a variational formulation

$$
a(u, v)=\lambda(v), \quad v \in H
$$

with a bilinear form a and a linear functional λ.
This weak form of the boundary value problem is well suited for numerical approximations, in particular because it requires less regularity. For a differential operator of order $2 m$, the existence of weak derivatives up to order m suffices.

Ritz-Galerkin Approximation

The Ritz-Galerkin approximation $u_{h}=\sum_{i} u_{i} B_{i} \in \mathbb{B}_{h} \subset H$ of the variational problem

$$
a(u, v)=\lambda(v), \quad v \in H
$$

is determined by the linear system

$$
\sum_{i} a\left(B_{i}, B_{k}\right) u_{i}=\lambda\left(B_{k}\right),
$$

which we abbreviate as $G U=F$.

Example

 model problem$$
-\Delta u=f \text { in } D, \quad u=0 \text { on } \partial D
$$

Example

 model problem$$
-\Delta u=f \text { in } D, \quad u=0 \text { on } \partial D
$$

differential and boundary operators

$$
\mathcal{L}=-\Delta, \quad \mathcal{B} u=u
$$

Example

model problem

$$
-\Delta u=f \text { in } D, \quad u=0 \text { on } \partial D
$$

differential and boundary operators

$$
\mathcal{L}=-\Delta, \quad \mathcal{B} u=u
$$

bilinear form and linear functional

$$
a(u, v)=\int_{D} \operatorname{grad} u \operatorname{grad} v, \quad \lambda(v)=\int_{D} f v
$$

Example

model problem

$$
-\Delta u=f \text { in } D, \quad u=0 \text { on } \partial D
$$

differential and boundary operators

$$
\mathcal{L}=-\Delta, \quad \mathcal{B} u=u
$$

bilinear form and linear functional

$$
a(u, v)=\int_{D} \operatorname{grad} u \operatorname{grad} v, \quad \lambda(v)=\int_{D} f v
$$

Hilbert space: $H=H_{0}^{1}(D)$

Example

model problem

$$
-\Delta u=f \text { in } D, \quad u=0 \text { on } \partial D
$$

differential and boundary operators

$$
\mathcal{L}=-\Delta, \quad \mathcal{B} u=u
$$

bilinear form and linear functional

$$
a(u, v)=\int_{D} \operatorname{grad} u \operatorname{grad} v, \quad \lambda(v)=\int_{D} f v
$$

Hilbert space: $H=H_{0}^{1}(D)$
simple finite element subspace \mathbb{B}_{h} :
piecewise linear functions on a triangulation of D

Ellipticity

A bilinear form a on a Hilbert space H is elliptic if it is bounded and equivalent to the norm on H, i.e., if for all $u, v \in H$

$$
|a(u, v)| \leq c_{b}\|u\|\|v\|, \quad c_{e}\|u\|^{2} \leq a(u, u)
$$

with positive constants c_{b} and c_{e}.

Example

Poisson bilinear form

$$
a(u, v)=\int_{D} \operatorname{grad} u \operatorname{grad} v
$$

Example

Poisson bilinear form

$$
a(u, v)=\int_{D} \operatorname{grad} u \operatorname{grad} v
$$

Cauchy-Schwarz inequality \Longrightarrow

$$
\begin{aligned}
|a(u, v)| & \leq a(u, u)^{1 / 2} a(v, v)^{1 / 2}=\left(\int_{D}\|\operatorname{grad} u\|^{2}\right)^{1 / 2}\left(\int_{D}\|\operatorname{grad} v\|^{2}\right)^{1 / 2} \\
& \leq\|u\|_{1}\|v\|_{1}
\end{aligned}
$$

where

$$
\|w\|_{1}=\left(\int_{D}|w|^{2}+\|\operatorname{grad} w\|^{2}\right)^{1 / 2}
$$

is the norm on $H=H_{0}^{1}(D) \subset H^{1}(D)$

Example

Poisson bilinear form

$$
a(u, v)=\int_{D} \operatorname{grad} u \operatorname{grad} v
$$

Cauchy-Schwarz inequality \Longrightarrow

$$
\begin{aligned}
|a(u, v)| & \leq a(u, u)^{1 / 2} a(v, v)^{1 / 2}=\left(\int_{D}\|\operatorname{grad} u\|^{2}\right)^{1 / 2}\left(\int_{D}\|\operatorname{grad} v\|^{2}\right)^{1 / 2} \\
& \leq\|u\|_{1}\|v\|_{1}
\end{aligned}
$$

where

$$
\|w\|_{1}=\left(\int_{D}|w|^{2}+\|\operatorname{grad} w\|^{2}\right)^{1 / 2}
$$

is the norm on $H=H_{0}^{1}(D) \subset H^{1}(D)$
$\rightsquigarrow c_{b}=1$

Poincaré-Friedrichs inequality \Longrightarrow

$$
\int_{D}|u|^{2} \leq \operatorname{const}(D) \int_{D}\|\operatorname{grad} u\|^{2}, \quad u \in H_{0}^{1}(D)
$$

Poincaré-Friedrichs inequality \Longrightarrow

$$
\int_{D}|u|^{2} \leq \operatorname{const}(D) \int_{D}\|\operatorname{grad} u\|^{2}, \quad u \in H_{0}^{1}(D)
$$

add $\int_{D}\|\operatorname{grad} u\|^{2}=a(u, u)$ to both sides \rightsquigarrow

$$
\|u\|_{1}^{2} \leq(\operatorname{const}(D)+1) \int_{D}\|\operatorname{grad} u\|^{2}
$$

i.e., $c_{e}=(\operatorname{const}(D)+1)^{-1}$

Lax-Milgram Theorem

If a is an elliptic bilinear form and λ is a bounded linear functional on a Hilbert space H, then the variational problem

$$
a(u, v)=\lambda(v), \quad v \in V
$$

has a unique solution $u \in V$ for any closed subspace V of H. Moreover, if a is symmetric, the solution u can be characterized as the minimum of the quadratic form

$$
\mathcal{Q}(u)=\frac{1}{2} a(u, u)-\lambda(u)
$$

on V.

Special Case

finite element approximation: $V=\mathbb{B}_{h}$

Special Case

finite element approximation: $V=\mathbb{B}_{h}$
variational problem \Leftrightarrow Ritz-Galerkin system $G U=F$

Special Case

finite element approximation: $V=\mathbb{B}_{h}$
variational problem \Leftrightarrow Ritz-Galerkin system $G U=F$
ellipticity of $a \Longrightarrow$ positive definiteness of G :

$$
U G U=\sum_{i, k} u_{k} a\left(B_{i}, B_{k}\right) u_{i}=a\left(u_{h}, u_{h}\right) \geq c_{e}\left\|u_{h}\right\|^{2}>0
$$

for $u_{h} \neq 0$

Special Case

finite element approximation: $V=\mathbb{B}_{h}$
variational problem \Leftrightarrow Ritz-Galerkin system $G U=F$
ellipticity of $a \Longrightarrow$ positive definiteness of G :

$$
U G U=\sum_{i, k} u_{k} a\left(B_{i}, B_{k}\right) u_{i}=a\left(u_{h}, u_{h}\right) \geq c_{e}\left\|u_{h}\right\|^{2}>0
$$

for $u_{h} \neq 0$
existence of $G^{-1} \Longrightarrow$ unique solvability of the Ritz-Galerkin system

Special Case

finite element approximation: $V=\mathbb{B}_{h}$
variational problem \Leftrightarrow Ritz-Galerkin system $G U=F$
ellipticity of $a \Longrightarrow$ positive definiteness of G :

$$
U G U=\sum_{i, k} u_{k} a\left(B_{i}, B_{k}\right) u_{i}=a\left(u_{h}, u_{h}\right) \geq c_{e}\left\|u_{h}\right\|^{2}>0
$$

for $u_{h} \neq 0$
existence of $G^{-1} \Longrightarrow$ unique solvability of the Ritz-Galerkin system \rightsquigarrow part of the Lax-Milgram theorem, relevant for numerical schemes

Proof
variational problem \Leftrightarrow identity between bounded linear functionals on V

Proof

variational problem \Leftrightarrow identity between bounded linear functionals on V left side

$$
\mathcal{A} u: v \mapsto a(u, v)
$$

Proof

variational problem \Leftrightarrow identity between bounded linear functionals on V left side

$$
\mathcal{A} u: v \mapsto a(u, v)
$$

bounded in view of the boundedness of a :

$$
\|\mathcal{A} u\|=\sup _{\|v\|=1}|(\mathcal{A} u)(v)|=\sup |a(u, v)| \leq c_{b}\|u\|
$$

Proof

variational problem \Leftrightarrow identity between bounded linear functionals on V left side

$$
\mathcal{A} u: v \mapsto a(u, v)
$$

bounded in view of the boundedness of a :

$$
\|\mathcal{A} u\|=\sup _{\|v\|=1}|(\mathcal{A} u)(v)|=\sup |a(u, v)| \leq c_{b}\|u\|
$$

Riesz theorem \rightsquigarrow representation for bounded linear functionals $\varrho: V \rightarrow \mathbb{R}$:

$$
\varrho(v)=\langle\mathcal{R} \varrho, v\rangle
$$

with $\langle\cdot, \cdot\rangle$ the scalar product on V (identical to the scalar product on H) and \mathcal{R} an isometry onto V

\rightsquigarrow equivalent form of the variational problem

$$
\mathcal{R} \mathcal{A} u=\mathcal{R} \lambda
$$

\rightsquigarrow equivalent form of the variational problem

$$
\mathcal{R} \mathcal{A} u=\mathcal{R} \lambda
$$

rewrite as fixed point equation

$$
u=\underbrace{u-\omega \mathcal{R} \mathcal{A} u}_{\mathcal{S} u}+\omega \mathcal{R} \lambda
$$

with $\omega>0$
\rightsquigarrow equivalent form of the variational problem

$$
\mathcal{R} \mathcal{A} u=\mathcal{R} \lambda
$$

rewrite as fixed point equation

$$
u=\underbrace{u-\omega \mathcal{R} \mathcal{A} u}_{\mathcal{S} u}+\omega \mathcal{R} \lambda
$$

with $\omega>0$
show: \mathcal{S} is contraction for small ω
(\rightsquigarrow Banach's fixed point theorem completes proof of first part)
\rightsquigarrow equivalent form of the variational problem

$$
\mathcal{R} \mathcal{A} u=\mathcal{R} \lambda
$$

rewrite as fixed point equation

$$
u=\underbrace{u-\omega \mathcal{R} \mathcal{A} u}_{\mathcal{S} u}+\omega \mathcal{R} \lambda
$$

with $\omega>0$
show: \mathcal{S} is contraction for small ω
(\rightsquigarrow Banach's fixed point theorem completes proof of first part) estimate

$$
\|\mathcal{S}\|=\sup _{\|u\|=1}\langle u-\omega \mathcal{R} \mathcal{A} u, u-\omega \mathcal{R} \mathcal{A} u\rangle^{1 / 2}
$$

using the ellipticity of a
\rightsquigarrow equivalent form of the variational problem

$$
\mathcal{R} \mathcal{A} u=\mathcal{R} \lambda
$$

rewrite as fixed point equation

$$
u=\underbrace{u-\omega \mathcal{R} \mathcal{A} u}_{\mathcal{S} u}+\omega \mathcal{R} \lambda
$$

with $\omega>0$
show: \mathcal{S} is contraction for small ω
(\rightsquigarrow Banach's fixed point theorem completes proof of first part) estimate

$$
\|\mathcal{S}\|=\sup _{\|u\|=1}\langle u-\omega \mathcal{R} \mathcal{A} u, u-\omega \mathcal{R} \mathcal{A} u\rangle^{1 / 2}
$$

using the ellipticity of a
for $\omega=c_{e} / c_{b}^{2}$

$$
\langle\ldots, \ldots\rangle=\|u\|^{2}-2 \omega a(u, u)+\omega^{2}\|\mathcal{R} \mathcal{A} u\|^{2} \leq 1-2 \omega c_{e}+\omega^{2} c_{b}^{2}<1
$$

since $\langle\mathcal{R} \mathcal{A} u, u\rangle=(\mathcal{A} u)(u)=a(u, u)$

Proof (symmetric case)

symmetric elliptic bilinear form $a \rightsquigarrow$ scalar product and equivalent norm $\|\cdot\|_{a}$:

$$
\|u\|_{a}^{2}=\langle u, u\rangle_{a}=a(u, u) \asymp\|u\|^{2}, \quad u \in H
$$

Proof (symmetric case)

symmetric elliptic bilinear form $a \rightsquigarrow$ scalar product and equivalent norm $\|\cdot\|_{a}$:

$$
\|u\|_{a}^{2}=\langle u, u\rangle_{a}=a(u, u) \asymp\|u\|^{2}, \quad u \in H
$$

Riesz representation theorem \Longrightarrow

$$
\lambda(v)=a(R \lambda, v), \quad v \in H
$$

Proof (symmetric case)

symmetric elliptic bilinear form $a \rightsquigarrow$ scalar product and equivalent norm $\|\cdot\|_{a}$:

$$
\|u\|_{a}^{2}=\langle u, u\rangle_{a}=a(u, u) \asymp\|u\|^{2}, \quad u \in H
$$

Riesz representation theorem \Longrightarrow

$$
\lambda(v)=a(R \lambda, v), \quad v \in H
$$

rewrite the quadratic form:

$$
\mathcal{Q}(u)=\frac{1}{2} a(u, u)-\lambda(u)=\frac{1}{2}\|u-R \lambda\|_{a}^{2}-\frac{1}{2}\|R \lambda\|_{a}^{2}
$$

Proof (symmetric case)

symmetric elliptic bilinear form $a \rightsquigarrow$ scalar product and equivalent norm $\|\cdot\|_{a}$:

$$
\|u\|_{a}^{2}=\langle u, u\rangle_{a}=a(u, u) \asymp\|u\|^{2}, \quad u \in H
$$

Riesz representation theorem \Longrightarrow

$$
\lambda(v)=a(R \lambda, v), \quad v \in H
$$

rewrite the quadratic form:

$$
\mathcal{Q}(u)=\frac{1}{2} a(u, u)-\lambda(u)=\frac{1}{2}\|u-R \lambda\|_{a}^{2}-\frac{1}{2}\|R \lambda\|_{a}^{2}
$$

minimizing $\mathcal{Q} \Leftrightarrow$ best approximation to $R \lambda$ from V

Proof (symmetric case)

symmetric elliptic bilinear form $a \rightsquigarrow$ scalar product and equivalent norm $\|\cdot\|_{a}$:

$$
\|u\|_{a}^{2}=\langle u, u\rangle_{a}=a(u, u) \asymp\|u\|^{2}, \quad u \in H
$$

Riesz representation theorem \Longrightarrow

$$
\lambda(v)=a(R \lambda, v), \quad v \in H
$$

rewrite the quadratic form:

$$
\mathcal{Q}(u)=\frac{1}{2} a(u, u)-\lambda(u)=\frac{1}{2}\|u-R \lambda\|_{a}^{2}-\frac{1}{2}\|R \lambda\|_{a}^{2}
$$

minimizing $\mathcal{Q} \Leftrightarrow$ best approximation to $R \lambda$ from V characterization of the best approximation u,

$$
a(u-R \lambda, v)=0, \quad v \in V
$$

\Leftrightarrow variational equations

