
Finite Element Methods with B-Splines:
Sample Matlab Programs

Klaus Höllig and Jörg Hörner

November 2011

1 Introduction

The small collection of Matlab programs (FEMB-Programs; version 1.0) is intended
as a supplement to the SIAM book

“Finite Element Methods with B-Splines” (Frontiers in Applied Mathematics, 2003),

referred to by [FB] in the following. Our examples illustrate that the elegance and effi-
ciency of B-spline algorithms, familiar from numerous applications, also prevail for the
numerical solution of partial differential equations. This is due to the exceptionally sim-
ple data structure of uniform B-splines with its obvious advantages. Most importantly,
regardless of the degree, the finite element subspace is spanned by translates of a single
basis function, and the coefficients are associated with a regular grid; no mesh generation
and connectivity data structures are necessary as for conventional finite element codes.

The goal of our sample programs is not to cover a broad range of partial differential
equations or to provide B-spline software ready to serve potential applications. Instead,
our Matlab routines for basic model problems are intended as examples which show
how to exploit standard B-spline features. In particular, the m-files provide illustrations
for teaching purposes. Moreover, experimenting with our sample codes can facilitate the
development of B-spline-based finite element software.

Since the introduction of WEB-splines by U. Reif, J. Wipper, and the first author [6],
finite element methods with uniform B-splines have been implemented for many applica-
tions (cf., in particular [12, 1] and www.web-spline.de/publications). Our program
collection builds on the experience gained throughout the past decade and also relies on
standard finite element procedures (cf., e.g., [11]). A new key feature are the modified
integration algorithms which directly use an implicit domain representation. This sim-
plifies the main assembly routines. In particular, a parametric boundary representation
is no longer required.

1

www.web-spline.de/publications


The programs solely use weighted B-spline approximations. While the extension proce-
dure [FB, section 4.4] is essential for many theoretical aspects, it is usually not necessary
in practice. Recent results of U. Reif and B. Mößner [9] support this observation.

In accordance with our primary purpose to provide an easy to understand introduction
to B-spline finite element programming, we illustrate the methods described in [FB] in
a very elementary setting:

• The simulation domain is a subset of (0, 1)2 or (0, 1)3.

• All boundary conditions are homogeneous.

• Only second order problems are considered.

• A basic conjugate gradient solver is used.

Most generalizations (cf. section 8) are straightforward and have partially been imple-
mented. Moreover, the programs can be adapted to incorporate more recent develop-
ments, such as special cases (one-patch geometries) of isogeometric [3] and weighted
isogeometric [4] techniques. Our implementation of multigrid algorithms [5] can serve
as an example demonstrating that the overall program structure also adapts well to
variants of B-spline finite elements.

Our programs are easily ported to any of the standard programming languages. We use
Matlab [8] for several reasons. Matlab provides an ideal environment for program
development, especially in the context of numerical methods. A programmer can focus
on the essentials of algorithms and has convenient access to powerful functionality, in
particular for visualization. Finally, the matrix oriented syntax naturally enforces a
program structure which is well suited for vectorization.

2 If you do not like to read detailed program docu-

mentations . . .

. . . here are some brief instructions to get started!

As a basic example, the following steps are required to solve Poisson’s problem

−∆u = f

on a domain D ⊆ (0, 1)2 with homogeneous Dirichlet boundary conditions:

(i) Select a grid width 1/H H∈ N and a B-spline degree n and set defaults for the
algorithmic parameters.

(ii) Define the force function f as an inline function.

2



(iii) Write an m-file with a weight function w describing the domain, i.e., w is positive
on D and < 0 on all points in (0, 1)2 outside of D. Include also partial derivatives
up to second order1.

(iv) Call the fe-solver bvp 2d.

Here is the complete Matlab code for the disc

D : w(x, y) = 1/4− (x− 1/2)2 − (y − 1/2)2 > 0

and the force function f(x, y) = sin(y − x).

Matlab script example BASIC.m:

H = 10; n = 3; PAR = set_par(H,n);

w = @w_BASIC

f = @(x,y) sin(y-x);

bvp_2d(@p_poisson,@q_poisson,f,w,w,H,n,PAR);

Matlab weight function w BASIC.m

function [W,Wx,Wy,Wxx,Wxy,Wyy] = w_BASIC(x,y)

W = 1/4-(x-1/2).^2-(y-1/2).^2;

Wx = -2*(x-1/2); Wy = -2*(y-1/2);

Wxx = -2*ones(size(x)); Wxy = zeros(size(x)); Wyy = Wxx;

Both m-files are included in the program collection.

The program bvp 2d plots the domain, the grid, and the solution (view the source code
for the list of optional output variables) as shown in Figure 1.

Of course, any other force function f can be used. You may also replace w BASIC by any
other of the predefined weight functions, e.g.,

w_product

w_rvachev

w_bezier

...

Changing the parameters within these functions leads to further examples.

The input variables of the program bvp 2d indicate that there are many options =⇒
please, read on. But, you might try the demos and examples first. Just skip to sections
4 or 9 and experiment with the parameters of the sample programs. In addition, it is
advisable to look at the appropriate chapters in [FB] in order to fully understand the
theoretical background.

1 Values of second derivatives are needed only for error estimation and can be set to NaN if the
residual for the partial differential equation is not of interest.

3



Figure 1: Solution plotted by the program bvp 2d as called by example BASIC

3 Model Problems

The programs implement Ritz-Galerkin approximations for variational problems of the
form [FB, section 2.4]

a(u, v) =

∫
D

fv ∀v ∈ H

which correspond to a partial differential equation

Lu = f

of second order. The bilinear form a is elliptic, f is a square integrable function, and
H is a Hilbert space defined on the domain D. Moreover, H incorporates essential
homogeneous boundary conditions:

u = 0 on Γ ,

where Γ is a subset of the boundary ∂D of D. We consider three basic examples.

(P) Generalized Poisson problem [FB, section 6.3 (special case)]:

a(u, v) =

∫
D

(gradu) p (grad v) + quv

Lu = − div(p gradu) + qu ,

4



where D ⊂ (0, 1)2 or D ⊂ (0, 1)3, p is a positive and q a non-negative function on the
closure of D.

(E2) Two-dimensional elasticity (plane strain and plane stress) [FB, section 6.6]:

a(u, v) =

∫
D

ε(u)Qε(v)

Lu = −α
(
u1xx
u2yy

)
− (β + γ/4)

(
u2xy
u1xy

)
− (γ/4)

(
u1yy
u2xx

)
, f = (f 1, f 2) ,

where u = (u1, u2) is the displacement, D ⊂ (0, 1)2, ε = (ε1,1, ε2,2, ε1,2) is the two-
dimensional strain tensor, and

Q =

 α β 0
β α 0
0 0 γ


with α, β, γ defined in terms of material constants.

(E3) Three-dimensional elasticity [FB, section 6.5]:

a(u, v) =

∫
D

q1 trace(u) trace(v) + 2q2ε(u) : ε(v)

Lu = −(q1 + q2)

 u1xx + u2xy + u3xz
u1xy + u2yy + u3yz
u1xz + u2yz + u3zz

 − q2

 u1xx + u1yy + u1zz
u2xx + u2yy + u2zz
u3xx + u3yy + u3zz

 , f = (f 1, f 2, f 3) ,

where u = (u1, u2, u3) is the displacement, D ⊂ (0, 1)3, and qk > 0 are material constants.

For the elasticity problems, the constants α, β, γ, q1, q2 are defined in terms of the
Young modulus and the Poisson ratio,

E, ν,

which characterize the elastic properties of the material.

For each of the above problems, the finite element approximation with B-splines requires
the following:

• specification of the functions and constants appearing in the partial differential
equations

• description of the domain and the essential boundary

• choice of the spline space.

The domain and the essential boundary are represented by weight functions.

5



Weight Functions. The domain D is a subset of the unit square (d = 2) or the unit
cube (d = 3) described implicitly by a weight function wD:

D = {(x, y, . . .) ∈ (0, 1)d : wD(x, y, . . .) > 0} ,

where the notation (x, y, . . .) stands for (x, y) or (x, y, z).

The boundary condition u = 0 on the essential part Γ of ∂D is incorporated by a
weight function w which is of one sign on D and vanishes linearly on Γ2:

Γ = {(x, y, . . .) ∈ ∂D : w(x, y, . . .) = 0} .

We elaborate on these definitions in some more detail.

If the solution vanishes on the entire boundary (pure Dirichlet problem),

Γ = ∂D ⇔ wD = w ,

i.e., only a single weight function is required. On the other hand, if the normal derivative
is zero on ∂D (pure Neumann problem),

Γ = ∅ ⇔ w(x, y, . . .) = 1 .

Again, we only need to construct a weight function wD for the description of the sim-
ulation domain. For a mixed boundary value problem, the weight functions wD and w
are different. A simple example is shown in Figure 2. Since D ⊆ (0, 1)2, wD describes a
quarter disc. On the horizontal boundary Γ, the solution vanishes (Dirichlet or essential
boundary). This part of ∂D is represented by w. On the vertical and circular boundary,
the normal derivative of the solution is zero (Neumann or natural boundary).

D

Γ

D : (x, y) ∈ (0, 1)2 ∧ wD(x, y) = 1− x2 − y2 > 0,
Γ : (x, y) ∈ ∂D ∧ w(x, y) = y = 0

Figure 2: Weight functions for domain and essential boundary condition

2 Slightly generalizing the definition 4.4 in [FB, section 4.3], it is not necessary to require that w > 0;
it is sufficient to exclude zeros in D\Γ.

6



While the implicit boundary representation is exact, polynomial approximations are used
in the implementation. Therefore, all functions appearing in the differential equation
should be defined and continuous on all of (0, 1)d. Usually, in particular for explicit
formulas, this does not present any problems. If it does, one can simply use 0 as function
value on (0, 1)d\D.

The finite element subspace is spanned by scaled translates of a single function, the
uniform tensor product B-spline [FB, section 8.5]. (Run the demo demo spline 2d for
a visualization of this exceptionally simple basis.)

Splines. For all boundary value problems, solutions are approximated by linear com-
binations of weighted B-splines:

u(x, y, . . .) ≈ uh(x, y, . . .) =
H+n∑
k1=1

· · ·
H+n∑
kd=1

uk w(x, y, . . .)bk(x, y, . . .)

for (x, y, . . .) ∈ (0, 1)d with wD(x, y, . . .) > 0 and d = 2 or d = 3. Here,

• h = 1/H is the grid width, i.e. (0, 1)d is partitioned into Hd grid cells Qm;

• n is the degree of the B-splines;

• the coefficients uk are either scalars (problem (P)) or vectors (problems (E2),
(E3)) with the number of indices depending on the dimension d, i.e.,

uk = U(k1, k2), U(k1, k2,m), U(k1, k2, k3), U(k1, k2, k3,m), m = 1 : d;

• bk is the uniform tensor product B-spline with support

[(k1 − n− 1)h, k1h]× · · · × [(kd − n− 1)h, kdh] ,

i.e., k = (k1, . . . , kd) corresponds to the grid position.

Since, in general, D is a proper subset of (0, 1)d, not all B-spline coefficients are relevant.
Keeping these irrelevant array entries for B-splines with no support in D is essential to
maintain a simple data structure. In all programs, we work with the full set of (H +n)d

B-splines which have some support in (0, 1)d. Of course, no problem arises, since values
of irrelevant B-splines do not influence the solution on the domain D.

Unlike standard finite elements, weighted B-splines of degree n > 1 can be substituted
into the differential equation, i.e., we can form the pointwise residual.

7



Residual for the partial differential equation. The residual of the Ritz-Galerkin
approximation uh is defined as

r(x, y, . . .) = (Luh)(x, y, . . .)− f(x, y, . . .) ,

where L is the differential operator of the boundary value problem. The relative error

e = ‖r‖0,D/‖f‖0,D ,

with ‖ ‖0,D denoting the L2-norm on D, provides a measure of accuracy for the solution
without having to resort to grid refinement.

We expect that
e = O(H1−n)

for smooth solutions. For solutions with singularities caused, e.g., by corners or edges of
the domain or discontinuities of the force function, the approximation order deteriorates.
In fact, e needs not even be bounded for H →∞.

4 Finite Element Approximation

The problems (P), (E2), and (E3) are solved with the programs

bvp_2d, bvp_3d,

elasticity_2d,

elasticity_3d,

respectively. Simple illustrations are provided by the demos (cf. also section 9 for further
examples)

demo_{program name}.

They do not require any input and allow interactive specification of parameters with the
option of using defaults. We take the problems solved in the demos as basic examples for
our three principal applications and discuss the Matlab implementation now in more
detail.

4.1 Generalized Poisson Problem in Two Dimensions

Generalized Poisson problems in two dimensions can be solved with the program

function [U,wuXY,X,Y,R,e] = bvp_2d(p,q,f,wD,w,H,n,PAR) .

8



As example (see the demo demo bvp 2d), we consider the differential equation

− div
(

exp(xy)︸ ︷︷ ︸
p

gradu
)

+ (x+ 2y)︸ ︷︷ ︸
q

u = 3x− y︸ ︷︷ ︸
f

on the quarter disc

D : (x, y) ∈ (0, 1)2 ∧ wD(x, y) = 1− x2 − y2 > 0

with essential homogeneous boundary conditions u = 0 on the lower horizontal boundary

Γ : (x, y) ∈ ∂D ∧ w(x, y) = y = 0

(cf. Figure 2).

A Matlab program begins by specifying the functions appearing in the differential
equation, the weight functions for the domain and the essential boundary, and the grid
width and degree of the B-splines.

% pde

p = @p_exp;

q = @(x,y) x+2*y;

f = @(x,y) 3*x-y;

% domain and essential boundary

wD = @(x,y) 1-x.^2-y.^2;

w = @w_line;

% grid and degree

H = 10;

n = 3;

The functions p and w have to be supplied as m-files or local functions since they have
several output arguments (function values and partial derivatives).

function [P,Px,Py] = p_exp(x,y)

% coefficient of the bilinear form

P = exp(x.*y);

Px = y.*P; Py = x.*P;

function [W,Wx,Wy,Wxx,Wxy,Wyy] = w_line(x,y)

% weight function for the x-axis as essential boundary

W = y;

Wx = zeros(size(x)); Wy = ones(size(y));

Wxx = Wx; Wxy = Wx; Wyy = Wx;

After the main input arguments have been defined, we can call the finite element solver
with defaults for the algorithmic parameters.

9



% finite element approximation

PAR = set_par(H,n)

[U,wuXY,X,Y,R,e] = bvp_2d(p,q,f,wD,w,H,n,PAR);

The program plots the grid, the domain, and the graph of the weighted spline uh. It
returns the following output arguments.

U(1:H+n,1:H+n)

coefficients uk of the finite element approximation uh

X(1:H*M,1:H*M), Y(1:H*M,1:H*M)

regular grid of (HM)2 centered evaluation points in (0, 1)2 with coordinates in

{1, 3, . . . , 2HM − 1}/(2HM) ;

M = PAR.values is an algorithmic parameter with default value ceil(64/H) (see section
7). It controls the resolution for visualization. With the default value, approximately
64 evaluation points per coordinate direction are used.

wuXY(1:H*M,1:H*M), R(1:H*M,1:H*M)

numerical solution uh and residual r on the evaluation grid; e.g., R(k1,k2) is the value
of r at X(k1,k2),Y(k1,k2).

e

relative error for the partial differential equation (see the definition of the residual in
section 3).

The demo demo bvp 2d allows to specify the input arguments f, wD, H, and n of the
program bvp 2d interactively. For example, one can consider a sequence of grids, i.e.,
run the demo successively with

H = 2, 4, 8, ...

and determine the factors γ by which the error e is reduced in each refinement step
(γ ≈ 21−n for smooth solutions3). It is also possible to define different domains D. For
example,

wD = @(x,y) (x-1/2).^2+(y-1/2).^2-1/9

wD = @(x,y) 3+cos(pi*x)-4*y

...

are suitable choices. The only requirement is that the boundary of the domain specified
by wD contains some part of the essential boundary Γ = {(x, 0) : 0 ≤ x ≤ 1}.

3 Larger factors γ can be caused by singularities due to the corners of the domain D.

10



4.2 Generalized Poisson Problem in Three Dimensions

Generalized Poisson problems in three dimensions can be solved with the program

function [U,wuXYZ,X,Y,Z,R,e] = bvp_3d(p,q,f,wD,w,H,n,PAR) .

An example (see the demo demo bvp 3d) is the Neumann problem for the partial differ-
ential equation

−∆u+ u = f, f(x, y, z) = exp(x+ y + z) ,

(p = 1, q = 1) on a cube with a cylindrical hole:

D : (x, y, z) ∈ (0, 1)3 ∧ wD(x, y, z) = (x− 1/2)2 + (y − 1/2)2 − 1/9 > 0 .

Since the normal derivative vanishes on the entire boundary of D, the weight function w

is identically equal to one, reflecting the fact that no Dirichlet boundary conditions are
imposed (Γ = ∅).
The Matlab script is completely analogous to the two-dimensional example, and we
list the code without comment.

% pde

p = @p_poisson;

q = @(x,y,z) ones(size(x));

f = @(x,y,z) exp(x+y+z);

% domain and essential boundary

wD = @(x,y,z) (x-1/2).^2+(y-1/2).^2-1/9;

w = @w_one;

% grid and degree

H = 10;

n = 2;

% finite element approximation

PAR = set_par(H,n);

[U,wuXYZ,X,Y,Z,R,e] = bvp_3d(p,q,f,wD,w,H,n,PAR)

We have used predefined functions for the “Poisson coefficient” p(x, y, z) = 1 and the
“trivial weight” w(x, y, z) = 1. The finite element subspace consists of quadratic splines
on a 10× 10 grid. The program plots the domain boundary and visualizes the solution
with a volumetric slice plot. It returns essentially the same output arguments as its
two-dimensional counterpart – just the dimensions of the arrays change. Clearly, the
evaluation grid has three components:

[X,Y,Z] = ndgrid(1/(2*H*M) : 1/(H*M) : 1)

11



with M = PAR.values, and the arrays of B-spline coefficients, solution values, and point-
wise residuals are three-dimensional:

U(1:H+n,1:H+n,1:H+n

wuXYZ(1:H*M,1:H*M,1:H*M)

R(1:H*M,1:H*M,1:H*M)

As in the two-dimensional case, e is the relative error for the partial differential equation
and approximates the L2-norm of the residual divided by the L2-norm of f .

In the demo demo bvp 3d, one can choose f, wD, H, and n interactively. There are no
restrictions on the weight function wD other than that it should lead to a “reasonable”
form of the domain D. The simplest choice is

wD = @(x,y,z) ones(size(x))

defining D as the entire unit cube. In this case, an interesting experiment is to investigate
the convergence for eigenfunctions of the differential operator by setting, e.g.,

f = @(x,y,z) cos(pi*x).*cos(2*pi*y).*cos(3*pi*z)

and increasing the degree in successive runs of the demo:

n = 2, 3, 4, ...

For fixed H, e.g., H=6, we expect that e ≈ γn with γ < 1.

4.3 Two Dimensional Elasticity: Plane Strain and Plane Stress

The elasticity problem (E2) (cf. section 3) can be solved with the program

function [U,wuXY,X,Y,R,e] = elasticity_2d(model,E,nu,f,wD,w,H,n,PAR) .

The plane strain (model = ’strain’) and the plane stress (model = ’stress’) models
differ only in the coefficients of the bilinear form, which essentially depend on the Poisson
ratio nu; the Young modulus E just amounts to a scaling and can be set to 1.

In the demo demo elasticity 2d, we consider the deformation of a bridge-shaped,
concrete structure, which is fixed at the bottom,

D : (x, y) ∈ (0, 1)2 ∧ wD(x, y) = y/(0.7)− 1 + (x− 1/2)2/(0.2)2 > 0

Γ : (x, y) ∈ ∂D ∧ w(x, y) = y = 0

under gravity,
f(x, y) = (0,−1) .

For cubic B-splines on a 10×10 grid, the finite element approximation is computed with
the following Matlab script.

12



% pde

model = ’strain’;

E = 1;

nu = 0.2;

f = @f_gravity;

% domain and essential boundary

height = 0.7; width = 0.4;

wD = @(x,y) y/height + (x-1/2).^2/(width/2)^2 - 1;

w = @w_line;

% grid and degree

H = 10;

n = 3;

% finite element approximation

PAR = set_par(H,n);

[U,wuXY,X,Y,R,e] = elasticity_2d(model,E,nu,f,wD,w,H,n,PAR);

The script uses two auxiliary functions, which are supplied in m-files and predefined
in the program collection.

function [F1,F2] = f_gravity(x,y)

% normalized gravitational force

F1 = zeros(size(x)); F2 = -ones(size(y));

function [W,Wx,Wy,Wxx,Wxy,Wyy] = w_line(x,y)

...

(see subsection 4.1).

The program plots the domain, the grid, and the displacement uh ≈ u. The solution
and consequently also its finite element approximation are vector-valued:(

u1(x, y)
u2(x, y)

)
≈
(
u1h(x, y)
u2h(x, y)

)
=

H+n∑
k1=1

H+n∑
k2=1

(
U(k1, k2, 1)
U(k1, k2, 2)

)
w(x, y) bk(x, y) ,

where U is the array of B-spline coefficients, computed by the program. Also returned
are the values

wuXY(1:H*M,1:H*M,1:2), R(1:H*M,1:H*M,1:2)

of the numerical solution uh and of the residual r on the evaluation grid X, Y; M =

PAR.values, as mentioned before. The relative error e for the partial differential equa-
tion is the last output argument.

In the demo demo elasticity 2d, we can gradually change the domain by varying the
parameters height and width in the parabola defining wD, e.g.,

13



height = 0.7 -> 0.75, 0.8, ...,

width = 0.4 -> 0.5, 0.6, ...

and observe the effect on the displacement. As usual, one can also specify H and n

interactively.

Due to the corners of the domain the solution is not smooth. As a consequence, the
error e, which involves second derivatives, increases, e.g., for the sequence

H: 8, 16, 32, ...

Nevertheless, the numerical solution converges in the L2-norm (see subsection 9.5 for a
similar example).

4.4 Three-Dimensional Elasticity

The elasticity problem (E3) (cf. section 3) can be solved with the program

function [U,wuXYZ,X,Y,Z,R,e] = elasticity_3d(E,nu,f,wD,w,H,n,PAR) .

In the demo demo elasticity 3d, we compute the deformation of a rotating steel hy-
perboloid fixed at a cylindrical vertical axis:

D : (x, y, z) ∈ (0, 1)3 ∧ 1/25 < (x− 1/2)2 + (y − 1/2)2 < (1 + z2)/9 ,

Γ : (x, y, z) ∈ ∂D ∧ w(x, y, z) = 1/25− (x− 1/2)2 − (y − 1/2)2 = 0 .

We need two auxiliary functions to describe the problem.

Centrifugal force:

function [F1,F2,F3] = f_centrifugal(x,y,z)

% centrifugal force:

F1 = x; F2 = y; F3 = zeros(size(z));

Weight function for the essential boundary:

function [W,Wx,Wy,Wz,Wxx,Wxy,Wxz,Wyy,Wyz,Wzz] = w_cylinder(x,y,z,r)

% cylinder with radius r and vertical axis (0,0,z)

W = r*r - x.*x-y.*y;

Wx = -2*x; Wy = -2*y; Wxx = -2+0*x; Wyy = Wxx;

Wz = 0*z; Wxy = Wz; Wxz = Wz; Wyz = Wz; Wzz = Wz;

The Matlab script for the finite element approximation has a by now familiar form.

14



% pde

E = 1;

nu = 0.28;

f = @(x,y,z) f_centrifugal(x-1/2,y-1/2,z);

% essential boundary and domain

w = @(x,y,z) w_cylinder(x-1/2,y-1/2,z,1/5);

profile = @(z) sqrt(1+z.^2)/3;

wD = @(x,y,z) -w(x,y,z).*(profile(z).^2-(x-1/2).^2-(y-1/2).^2);

% grid and degree

H = 8;

n = 1;

% finite element approximation

PAR = set_par(H,n);

[U,wuXYZ,X,Y,Z] = elasticity_3d(E,nu,f,wD,w,H,n,PAR);

Note that the negative product of the two elementary weight functions correctly describes
the domain D : wD > 0. The minus sign is necessary, since w cylinder is a weight
function for the interior of a cylinder. To describe the cylinder with axis at x = y = 1/2,
the function is called with shifted arguments x-1/2,y-1/2. Similarly f centrifugal is
also called with translated arguments.

The program elasticity 3d plots the boundary of D and visualizes the displacement
as a vector field. For degree n=1, as chosen in the script, second derivatives do not
exist. Therefore, we have omitted the output arguments R (residual) and e (error);
the programs assign NaN to R and e in these cases. Returned are merely the B-spline
coefficients U and the values wuXYZ of the displacement on the grid X, Y, Z:

umh =
H+n∑
k1=1

H+n∑
k2=1

H+n∑
k3=1

U(k1, k2, k3,m)w bk

wuXYZ(`1, `2, `3,m) = umh (X(`1, `2, `3), Y (`1, `2, `3), Z(`1, `2, `3)), `ν = 1 : HM

(M=PAR.values) where m = 1, 2, 3 refers to the three components of the displacement
uh ≈ u = (u1, u2, u3).

In the demo demo elasticity 3d, it is possible to specify H, n, and the profile of the
rotating structure, i.e., the outer radius R as a function of z. Possible choices are

profile = @(z) (1+z)/4 % cone

profile = @(z) (3+8*(z-1/2).^2)/10 % paraboloid

...

An essential restriction is

1/5 ≤ R = profile(z) ≤ 1/2 ,

since otherwise the profile intersects the inner cylinder or lies outside of (0, 1)3.

15



5 Error Estimation

For points outside the domain D, the solution is not defined, and the corresponding
entries of the arrays

wuXY, wuXYZ, R

are set to NaN. This has to be taken into account when calculating the relative error e,
which is accomplished by the following Matlab code segment.

R = R(:); F = F(:);

R(isnan(R)) = 0; F(isnan(R)) = 0;

e = norm(R)/norm(F);

As mentioned earlier, e approximates the quotient of the L2-norms of the residual r and
the force function f (F contains the grid values).

From the grid values

wuXY, wuXYZ

we can estimate the error of the finite element approximation in the L2-norm in the
usual way. We compare the numerical solutions on a sequence of grids with

H = Hmin, 2*Hmin, 4*Hmin, ...

To this end, it is convenient to use the same evaluation grids, i.e, the number M =

PAR.values, which controls the number of evaluation points per grid cell, has to be
adjusted:

M = Mmax, Mmax/2, Mmax/4, ...

With these choices, the same (HminMmax)
d points are used on all grids.

As an illustration, we list a sample Matlab code for estimating the L2-error and the
convergence rate.

...

grids = 4;

u_old = NaN;

for m = 1:grids;

H = 2^m; PAR.values = 2^(grids-m);

[U,wuXY,X,Y] = bvp_2d(p,q,f,w,w,H,n,PAR);

wuXY(isnan(wuXY)) = 0;

16



error(m) = norm(u_old(:) - wuXY(:))/norm(wuXY(:));

u_old = wuXY;

end

rate = -diff(log(error))/log(2);

...

As is customary, the approximation on the finer grid takes the place of the exact solution,
i.e.,

eh =
‖uh − u‖0,D
‖u‖0,D

≈
‖uh − uh/2‖0,D
‖uh/2‖0,D

,

as computed in the second last statement of the for-loop.

With the last Matlab statement, we estimate the approximation order:

eh ≈ chα =⇒ α ≈ log2(eh)− log2(eh/2) .

We expect that
eh = O(H−n−1) ,

i.e., α = n+ 1 for smooth solutions.

6 Principal Subroutines

The main programs

bvp_2d, bvp_3d, elasticity_2d, elasticity_3d,

which solve the generalized Poisson problem and the elasticity systems, have an almost
identical structure. They successively call the subroutines

integrate_...

assemble_...

solve_...

evaluate_...

visualize_...

for determining Gauß parameters, assembling the Ritz-Galerkin system, computing the
B-spline coefficients, evaluating the solution and the residual, and visualizing the results.
There are several versions for each of these programs,

_... = _2d, _3d, _2de, or _3de,

17



to take the different dimension and specific features of the problems (P-2d), (P-3d),
(E2), and (E3) into account.

The overall structure of the main programs resembles to some extent a simulation uti-
lizing standard finite elements. We now describe each of the five principal steps in some
more detail. This includes a discussion of various algorithmic parameters, which are
combined in a structure

PAR

and mostly control the accuracy of various approximations. The fields of PAR can be
defined separately. Usually, one will invoke the program

function PAR = set_par(H,n)

to assign default values and change only few of the algorithmic parameters.

6.1 Numerical Integration

The subroutines

function [int,cells] = integrate_2d(wD,H,PAR)

function [int,cells] = integrate_3d(wD,H,PAR)

determine Gauß parameters for integration over the relevant portions Dm of the grid
cells

Qm = [(m1 − 1)h,m1h]× · · · × [(md − 1)h,mdh], h = 1/H ,

i.e., the sets
Dm = D ∩ Qm, m1, . . . ,md = 1 : H

(d = 2 or d = 3).

Input for the integration routines are the weight function wD, describing the domain D,
the number H of grid cells per coordinate, and the algorithmic parameters

PAR.fit, default: n+2,

PAR.gauss, default: n+1,

PAR.steps, default: 4,

PAR.tol_int, default: H^(-2*PAR.gauss-1).

These parameters specify the order of interpolation of the weight function, the minimal
number of Gauß points per coordinate, the number of Gauß steps, and the local relative
accuracy.

18



The programs return, in a structure int, for each grid cell Qm Gauß coefficients and
Gauß points. These parameters are used to approximate integrals of functions ϕ over
relevant cell-subsets Dm. For example, for d = 3,∫

Dm

ϕ ≈
∑
ν

cν ϕ(p(ν, 1), p(ν, 2), p(ν, 3)) ,

where

c = int.c{m1,m2,m3}(:), p = int.p{m1,m2,m3}(:,1:3) .

In addition, the subroutines integrate ... return arrays

cells(1:H,1:H), cells(1:H,1:H,1:H)

with the cell types, which is convenient for further processing. The values −1, 0, 1
indicate an outer, boundary, and inner cell, respectively.

The programs for generating the Gauß parameters for computing finite element inte-
grals basically use cell partitioning, as described in [FB, section 8.4]. However, they
operate directly on the implicit domain representation, which simplifies the algorithm
considerably.

In each grid cell Qm, the weight function wD is interpolated by a polynomial at αd (α =
PAR.fit) equally spaced centered points. This results in an error of order

O(H−α)

for smooth boundary portions. Hence, PAR.fit should be chosen larger than the B-
spline degree n to maintain optimal accuracy. Of course, if the interpolation is exact, a
smaller value might suffice (e.g., PAR.fit=3 for quadrics).

For inner grid cells a tensor product Gauß formula with βd (β = PAR.gauss) points is
used with a relative error of order

O(H−2β)

for smooth integrands. Choosing β greater than n is recommended to yield sufficiently
accurate entries of the Ritz-Galerkin matrix.

For boundary cells, depending on the geometry, the number of Gauß points is succes-
sively raised (at most PAR.steps times) until the relative tolerance PAR.tol int is met.
If PAR.steps=0, the Gauß formula with βd points is used throughout, which requires
significantly less computing time. Setting PAR.steps equal to 1 does also not yet allow
error estimation and is just equivalent to raising PAR.gauss by 1 for boundary cells.

As test for the local accuracy, the sums of the weights, which approximate the area
(d = 2) or volume (d = 3) of Dm = D ∩ Qm for consecutive Gauß formulas, are
compared. Since this does not take the actual finite element integrands into account,

19



the estimate of the error is not very reliable and a pessimistic choice of the parameters
is recommended.

This has been just a brief outline of the integration strategy. The algorithmic details
cannot be explained in a short paragraph; in particular, the comments in the programs
are probably not sufficient. We refer to the forthcoming publication [7].

The integration programs integrate 2d, integrate 3d require auxiliary data files

parameters_2d.mat, parameters_3d.mat

with precomputed variables which are problem-independent (Gauß parameters, interpo-
lation matrices, etc.). These files can be generated with the programs

function parameters_2d(n_max)

function parameters_3d(n_max)

where n max is an upper bound for PAR.fit and PAR.gauss. For the existing mat-files
n max=10 was used. Exceeding this upper bound results in an error message.

6.2 Assembly of the Ritz-Galerkin System

Matrix and right side of the Ritz-Galerkin system are computed with the subroutines

function [G,F] = assemble_2d(p,q,f,w,H,n,int,PAR),

function [G,F] = assemble_3d(p,q,f,w,H,n,int,PAR),

function [G,F] = assemble_2de(model,E,nu,f,w,H,n,int,PAR),

function [G,F] = assemble_3de(E,nu,f,w,H,n,int,PAR).

These assembly routines convincingly demonstrate the beauty of B-spline elements: they
just consist of a few statements inside fully parallelizable loops (cf. [FB, section 8.5]).

The input arguments pertain to the variational problem (p,q,model,E,nu,f), the spline
space (w,H,n), and the Gauß parameters for numerical integration (int). A relative
tolerance

PAR.tol_zero, default: 1000*eps,

is used to eliminate the influence of B-splines with excessively small values inside D,
which are considered irrelevant.

The programs return the Ritz-Galerkin system in B-spline format, identifying matrix and
vector elements with the position of the corresponding basis functions. For example, for
three-dimensional elasticity,

G(k1, k2, k3, s1, s2, s3, i, j) = a(eiw bk, ej w b`), sm = `m − km + n+ 1

F (k1, k2, k3, i) =

∫
D

f iw bk ,

20



where e1, e2, e3 are the unit vectors in R3, eiwbk are the finite element basis functions
and f i are the components of the force function. Since the Ritz-Galerkin matrix has a
regular band structure, we have identified the column indices ` with the diagonal shifts
sm (s1 = s2 = s3 = n + 1 corresponds to the main diagonal). Of course, entries are
nonzero only, if the supports of the B-splines bk and b` overlap. Hence,

1 ≤ sm ≤ 2n+ 1 ,

and the dimensions of the arrays are

G(1:H+n,1:H+n,1:H+n,1:2*n+1,1:2*n+1,1:2+n+1,1:31,:3),

F(1:H+n,1:H+n,1:H+n,1:3),

still considering three-dimensional elasticity as a representative example.

6.3 Solution of the Linear System

The Ritz-Galerkin systems are solved with the subroutines

function U = solve_2d(G,F,PAR)

function U = solve_3d(G,F,PAR)

function U = solve_2de(G,F,PAR)

function U = solve_3de(G,F,PAR)

using a standard conjugate gradient algorithm with symmetric diagonal preconditioning.
Of course, for the implementation of the basic matrix/vector multiplication with the
scaled Ritz-Galerkin matrix, these solvers take the special B-spline format into account.

Input are the Ritz-Galerkin system, stored in the arrays G, F, and the parameters

PAR.tol_solve, default: H^(-n-3),

PAR.iterations, default: 100000.

The programs return the B-spline coefficients U of the Ritz-Galerkin approximation. For
example, for three-dimensional elasticity,

u(x, y, z) ≈
3∑

m=1

H+n∑
k1=1

H+n∑
k2=1

H+n∑
k3=1

U(k1, k2, k3,m)w(x, y, z) em bk(x, y, z)

where em is the m-th unit vector.

The algorithmic parameters are self-explanatory. The iteration stops if the initial resid-
ual is reduced by a factor PAR.tol solve. The bound on the maximal number of itera-
tions, PAR.iterations, is just a precaution in case of convergence failure. A sufficiently
high value, e.g., 10000, is recommended.

Upon termination of the conjugate gradient procedure, we compute and print the norm
of the residual to assess the accuracy of the solution.

21



6.4 Evaluation of the Ritz-Galerkin Approximation and of its
Residual

The subroutines

function [wuXY,X,Y,R,e] = evaluate_2d(p,q,f,wD,w,U,H,n,PAR)

function [wuXYZ,X,Y,Z,R,e] = evaluate_3d(p,q,f,wD,w,U,H,n,PAR)

function [wuXY,X,Y,R,e] = evaluate_2de(model,E,nu,f,wD,w,U,H,n,PAR)

function [wuXYZ,X,Y,Z,R,e] = evaluate_3de(E,nu,f,wD,w,U,H,n,PAR)

evaluate the Ritz-Galerkin approximation on a regular grid and compute its residual for
the differential equation.

The input arguments are identical to the main programs. They describe the partial
differential equation (p,q,model,E,nu,f,wD) and the spline space (w,U,H,n); the pa-
rameter

PAR.values, default: ceil(64/H),

specifies the number of evaluation points per coordinate for the grid cells. For high qual-
ity images of the solution, a higher value of PAR.values is recommended; in particular,
to avoid artifacts near the boundary.

The programs return the values wuXY (d = 2) or wuXYZ (d = 3) of the Ritz-Galerkin
approximation at the grid points X, Y, . . . which have coordinates in{

1

2HM
,

3

2HM
, . . . ,

2HM − 1

2HM

}
, M = PAR.values .

For points outside the domain (wD < 0), the value NaN is assigned. In addition, the
residual R and the relative error e for the partial differential equation is computed.

6.5 Visualization of the Solution

The subroutines

function visualize_2d(wD,wuXY,X,Y,H)

function visualize_3d(wD,wuXYZ,X,Y,Z,H)

function visualize_2de(wD,wuXY,X,Y,H)

function visualize_3de(wD,wuXYZ,X,Y,Z,H)

provide graphic illustrations of the numerical solution. As input they require the weight
function wD, describing the domain, the values of the Ritz-Galerkin approximation
wuXY/wuXYZ on the regular grid X, Y, . . ., and the number H of grid cells per coordi-
nate direction.

22



For the two-dimensional generalized Poisson problem (P), the grid, the domain, and the
graph of the solution are shown. In three dimensions we visualize the solution with a
volumetric slice plot. For the elasticity problems, the displacement is shown as a vector
field. Moreover, in two dimensions, we color the domain D according to the size of the
displacement. In three dimensions, just the boundary of D is shown.

The amount of supplementary output is controlled by the parameter

PAR.info, default: 2,

with the possible values 0 (quiet run), 1 (printed information only), and 2 (full visual-
ization).

7 Auxiliary Programs

In the course of the finite element simulation, B-splines b and splines∑
k

U(k1, k2, . . .)bk, bk(x, y, . . .) = b(xH − k1, yH − k2, . . .) ,

have to be evaluated many times, often together with their derivatives. This is accom-
plished by the following three programs.

function [b,db] = b_spline(x,n)

% evaluation of univariate uniform B-splines

function [uXY,X,Y] = spline_2d(U,H,n,M)

function [uXYZ,X,Y,Z] = spline_3d(U,H,n,M)

% values of a spline on a regular grid in (0,1)^d

While the first program uses the standard recurrence relation [2] to evaluate the uni-
form B-spline and its derivative, the two- and three-dimensional evaluation routines first
compute the grid values of the uniform tensor product B-spline and then combine the
local mask with the coefficient array. This is also a standard procedure, appropriate for
all shift invariant bases.

We already mentioned the programs

function parameters_2d(n_max)

function parameters_3d(n_max)

which generate arrays used in the integration routines. Due to the regular grid, many
variables can be precomputed, which accelerates the run-time of computations.

Finally, the program

function PAR = set_par(H,n)

sets default values for the algorithmic parameters.

23



8 Generalizations

With just a few hundred lines of code implementing B-spline solvers of arbitrary order
for free-form domains, the scope of our program collection must remain rather limited.
Of course, B-spline techniques apply to virtually every simulation based on partial dif-
ferential equations. Moreover, even for the few model problems (P), (E1), and (E2),
generalizations and enhancements are possible. Some of these are outlined below.

• Tools for constructing weight functions: Rvachev’s method (cf. [10], [FB, section
4.3]) provides a general purpose technique for domains defined in terms of Boolean
operations, as is customary, e.g., in constructive solid geometry. Moreover, numer-
ical schemes based on evaluating distance functions have been implemented. In
particular, it is possible to construct weight functions from parametric boundary
descriptions (e.g., NURBS curves and surfaces). An approach yet to be explored
are spline weight functions. We think that this will eventually yield the most
versatile representations of free-form domains.

• Inhomogeneous boundary conditions: Boundary value problems can be reduced
to homogeneous form in a standard fashion; a function which satisfies the in-
homogeneous boundary conditions is subtracted from the solution. For domains
constructed via R-functions, a systematic theory is available [10]4. Alternatively,
non-essential boundary conditions can be incorporated with appropriate boundary
integrals into the variational formulation. If an additional parametric description
of the boundary is available, such integrals can be treated in the assembly process
similarly to the domain integrals. This has already been implemented. Finally, it
is possible to transform boundary integrals into domain integrals, which eliminates
the need of additional integration routines.

• Isogeometric elements: The routines for weighted B-splines easily extend to one-
patch isogeometric and weighted isogeometric approximations [4]. This allows a
particularly elegant handling of trim curves and surfaces. A natural application,
for which web-spline-based programs have already been written, is the analysis of
shells.

Isogeometric approximations, which use more than one patch or nonuniform knot
sequences, cannot be handled as simply as the uniform weighted B-spline elements.
Programs for general isogeometric elements require connectivity arrays and resem-
ble mesh-based finite element codes. As a consequence, much of the advantages of
the regular data structure for uniform B-splines is lost.

• Multigrid solvers: The conjugate gradient solver should be replaced by a multigrid
algorithm whenever possible. Due to natural refinement procedures and the regular

4 The procedures utilize normalized weight functions and can be simplified for the standard Neumann
and Robin boundary conditions.

24



grid, B-splines are ideally suited for this fastest solution technique (cf. FB, chapter
8 and [5]).

• Hierarchical refinement: Natural adaptive refinement strategies for B-spline ele-
ments are available [FB, section 4.5]. However, they have yet to be implemented.
This seems particularly promising in conjunction with the a posteriori error bound
provided by the residual. Refinements are made, where the pointwise residual R is
larger than a given tolerance.

• Approximation of derivatives: Derivatives of the weight function w and the coeffi-
cient p in the bilinear form can be approximated on the grid cells via polynomial
interpolation. Then, only routines for evaluation of these functions need to be
supplied.

• Performance optimization: Some improvements of the efficiency of our algorithms
are possible, but would make the codes less readable. For example, on inner grid
cells, precomputed arrays with B-spline values at Gauß points avoid duplicating
computations. The weight function w can be blended with a plateau of constant
height on a subset of D, leading to a further simplification; w has to be constructed
and evaluated only in a narrow boundary strip. Because of symmetry, only the
lower triangular part of the Ritz-Galerkin systems needs to be computed. For large
three-dimensional problems, it might be essential to incorporate such modifications
in order to obtain the best possible performance.

Clearly, much work lies ahead. However, we are convinced that, with a joint effort of
mathematicians and engineers, B-splines will prove to be as successful for finite element
methods as they already are in other disciplines.

9 Demos and Examples

In addition to the demos for the main programs (see section 4),

function demo_bvp_2d(),

function demo_bvp_3d(),

function demo_elasticity_2d(),

function demo_elasticity_3d(),

demos are available for the integration routines and the functions for evaluating splines:

function demo_integrate_2d(),

function demo_integrate_3d(),

function demo_spline_2d(),

function demo_spline_3d().

25



These demos allow interactive specification of the input arguments with the option of
using defaults.

The use of our main programs is also illustrated with several examples, which are listed
below. The corresponding Matlab functions do not allow any input. But, parameters
in the m-files can be changed in order to experiment with the algorithms.

9.1 Convergence Rates for a Smooth Domain [FB, section 6.1]

function example_bvp_2d_convergence

% convergence analysis for the Poisson problem -Delta u = f

% on the domain D: w>0 with Dirichlet boundary conditions

% solution u = sin(w) -> f = -Delta sin(w)

...

% maximal degree n and number of grid refinements

n_max = 4; H_steps = 4;

% functions describing domain, essential boundary, and pde

% (see also LOCAL FUNCTIONS as well as m-files w_shovel.m and p_poisson.m)

w = @w_shovel; wD = w;

p = @p_poisson; q = @(x,y) zeros(size(x));

f = @(x,y) f_delta_sinw(x,y,w);

% L2 and pde errors for different degrees and grid widths

fh = figure;

for n = 1:n_max

for k = 1:H_steps+1

H = 2^(k+1);

PAR=set_par(H,n); PAR.info = 1; PAR.values = 3;

[U,wuXY,X,Y,R,error_pde(k,n)] = bvp_2d(p,q,f,w,w,H,n,PAR);

uXY_exact = sin(w(X,Y)); uXY_exact(isnan(wuXY))=0;

error = uXY_exact(:) - wuXY(:); error(isnan(error)) = 0;

error_L2(k,n) = norm(error(:))/norm(uXY_exact(:));

end

rate_pde = -diff(log(error_pde))/log(2);

rate_L2 = -diff(log(error_L2))/log(2);

% visualization

...

end

%%%%% LOCAL FUNCTIONS

function F = f_delta_sinw(x,y,w)

% force f = -Delta u for solution u(x,y) = sin(w(x,y))

...

26



27



9.2 L2-Error for Increasing Degree [FB, section 6.3]

function example_bvp_3d_convergence

% convergence (increasing degree, fixed grid width) for

% -Delta u + u = exp(x-2y+3z)

% on a smooth domain with natural boundary conditions

...

% grid and maximal degree

H = 4; n_max = 4;

% pde, domain, and natural boundary conditions

% (see also m-files p_poisson.m, w_exp_3d.m, and w_one.m)

p = @p_poisson;

q = @(x,y,z) ones(size(x));

f = @(x,y,z) exp(x-2*y+3*z);

wD = @w_exp_3d;

w = @w_one;

% relative L2 error for different degrees

for n=1:n_max

PAR=set_par(H,n); PAR.values = 5; PAR.info = 1;

[U,u_H,X,Y,Z] = bvp_3d(p,q,f,wD,w,H,n,PAR);

u_H(isnan(u_H)) = 0;

% estimate error via difference of consecutive solutions

if n>1

e = u_H-u_old; error(n-1) = norm(e(:))/norm(u_old(:));

end

u_old = u_H;

end

... plot domain and print results

Printed result:

degree L2 error

1 2.96649e-03

2 4.64664e-04

3 5.21756e-05

28



9.3 Rvachev’s Method for CSG Domains [FB, sections 4.3, 8.3]

function example_bvp_3d_csg

% Poisson’s equation for a domain constructed with Boolean operations

...

% grid width and degree

H = 8; n = 1;

% pde (see also m-file p_poisson.m)

p = @p_poisson;

q = @(x,y,z) zeros(size(x));

f = @(x,y,z) ones(size(x));

% finite element approximation

PAR = set_par(H,n); PAR.steps = 0;

bvp_3d(p,q,f,@w_csg,@w_csg,H,n,PAR);

%%%%% LOCAL FUNCTIONS

% domain

function [W,Wx,Wy,Wz,Wxx,Wxy,Wxz,Wyy,Wyz,Wzz] = w_csg(x,y,z)

% combining elementary weight functions via Rvachev’s method

% ball

W1 = 4/25-(x-1/2).^2-(y-1/2).^2-(z-1/2).^2;

W1x = -2*(x-1/2); W1y = -2*(y-1/2); W1z = -2*(z-1/2);

% half space

W2 = z-1/2;

W2x = 0*x; W2y = W2x; W2z = ones(size(z));

% ellipsoid

W3 = 1-16*(x-1/2).^2-16*(y-1/2).^2-25/4*(z-1/2).^2;

W3x = -32*(x-1/2); W3y = -32*(y-1/2); W3z = -25/2*(z-1/2);

% intersection of ball with half space

s = sqrt(W1.^2+W2.^2);

W = W1+W2-s;

Wx = W1x+W2x-(W1.*W1x+W2.*W2x)./s;

Wy = W1y+W2y-(W1.*W1y+W2.*W2y)./s;

Wz = W1z+W2z-(W1.*W1z+W2.*W2z)./s;

% union with ellipsoid

s = sqrt(W.^2+W3.^2);

29



W = W+W3+s;

Wx = Wx+W3x+(W.*Wx+W3.*W3x)./s;

Wy = Wy+W3y+(W.*Wy+W3.*W3y)./s;

Wz = Wz+W3z+(W.*Wz+W3.*W3z)./s;

% leave second derivatives undefined

Wxx = NaN*W; Wxy = Wxx; Wxz = Wxx; Wyy = Wxx; Wyz = Wxx; Wzz = Wxx;

9.4 Plane Stress [FB, section 6.6]

function example_elasticity_2d_disc

% displacement of an excentric rotating steel disc

...

% offset and inner radius

d = 0.06; r = 0.1;

% degree and refinement steps

n = 4; H_steps = 3;

30



% Young modulus (normalized), Poisson ratio, and force

% (see m-file f_centrifugal.m)

E = 1; nu = 0.28;

f = @(x,y) f_centrifugal(x-1/2+d,y-1/2)

% domain and essential boundary

% (see m-file w_disc)

wD = @(x,y) -w_disc(x-1/2,y-1/2,1/2).*w_disc(x-1/2+d,y-1/2,r)

w = @(x,y) w_disc(x-1/2+d,y-1/2,r)

% finite element approximations with different grid widths

figure

for k=1:H_steps+1

H(k) = 4*2^k; PAR = set_par(H(k),n);

[U,wuXY,X,Y,R,e(k)] = elasticity_2d(’stress’,E,nu,f,wD,w,H(k),n,PAR);

pause(1)

end

... compute and print error for the pde and estimated convergence rate

31



Printed result:

H pde error rate

8 1.235e+00 NaN

16 3.236e-01 1.932e+00

32 8.570e-03 5.239e+00

64 2.567e-04 5.061e+00

9.5 Plane Strain [FB, section 6.6]

function example_elasticity_2d_tunnel

% displacement of a tunnel-shaped concrete structure under gravity

% (singular solution -> low accuracy)

...

% degree, refinement steps

n = 1; H_steps = 3;

% Young modulus (normalized) and Poisson ratio

E = 1; nu = 0.2;

% force, domain, and essential boundary

% (see m-files f_gravity.m, wD_tunnel.m, and w_line.m)

f = @f_gravity;

wD = @wD_tunnel; w = @w_line;

% finite element approximations with different grid widths

figure

for k=1:H_steps+1;

H{k} = 2*2^k; PAR=set_par(H{k},n);

[U,wuXY{k},X,Y] = elasticity_2d(’strain’,E,nu,f,wD,w,H{k},n,PAR);

wuXY{k}(isnan(wuXY{k}))=0;

pause(1)

end

... print estimated L2 error

Printed result:

H L2 error

4 2.61008e-01

8 1.07042e-01

16 7.89070e-02

32



9.6 Deformation under Gravity [FB, section 6.5]

function example_elasticity_3d_dome

% displacement of a concrete dome under gravity

...

% inner and outer half axes of ellipsoids

ri = [5 5 10]/20; ro = [9 9 18]/20;

% degree, grid, and evaluation points

n = 3;

H = 7; % odd

M = 9; % odd

% algorithmic parameters

...

% Young modulus (scaled), Poisson ratio, and force

% (see m-file f_gravity.m)

E = 1; nu = 0.3;

f = @f_gravity;

% domain and essential boundary

% (see m-files w_ellipsoid.m and w_plane.m)

wD = @(x,y,z) -w_ellipsoid(x-1/2,y-1/2,z,ri).*w_ellipsoid(x-1/2,y-1/2,z,ro);

w = @w_plane;

33



% finite element approximation

figure

[U,wuXYZ,X,Y,Z] = elasticity_3d(E,nu,f,wD,w,H,n,PAR);

... plot of cross section

10 Terms of Use

The programs listed in the following section are test versions, intended only for educa-
tional use and for illustrating the methods described in the SIAM book “Finite Element
Methods with B-Splines”. No permission is granted for any other application, in partic-
ular for any commercial use or applications of the programs, which can result in material
or physical damage. A possible lack of reliability of the numerical algorithms, which to
some extent are based on heuristic strategies, has been emphasized. As a consequence,
no guarantees for the correctness of the computed results can be given.

In addition to the above restrictions, the general terms of MathWorks for using Mat-
lab programs apply.

34



List of Files

The following files are provided by our program collection FEMB-Programs; version 1.0.

Main programs
bvp 2d.m

elasticity 2d.m

integrate 2d.m

spline 2d.m

assemble 2d.m

assemble 2de.m

solve 2d.m

solve 2de.m

evaluate 2d.m

evaluate 2de.m

visualize 2d.m

visualize 2de.m

bvp 3d.m

elasticity 3d.m

integrate 3d.m

spline 3d.m

assemble 3d.m

assemble 3de.m

solve 3d.m

solve 3de.m

evaluate 3d.m

evaluate 3de.m

visualize 3d.m

visualize 3de.m

Demo and example functions
demo bvp 2d.m

demo bvp 3d.m

demo elasticity 2d.m

demo elasticity 3d.m

demo integrate 2d.m

demo integrate 3d.m

demo spline 2d.m

demo spline 3d.m

example BASIC.m

example bvp 2d convergence.m

example bvp 3d convergence.m

example bvp 3d csg.m

example elasticity 2d disc.m

example elasticity 2d tunnel.m

example elasticity 3d dome.m

p poisson.m

q poisson.m

f centrifugal.m

f gravity.m

wD tunnel.m

w ball.m

w BASIC.m

w bezier.m

w cylinder.m

w disc.m

w ellipsoid.m

w exp 3d.m

w hyperboloid.m

w line.m

w one.m

w plane.m

w product.m

w rvachev.m

w shovel.m

Auxiliary functions and data files
b spline.m

parameters 2d.m

parameters 2d.mat

gausspar.m

Contents.m

set par.m

parameters 3d.m

parameters 3d.mat

vanderinv.m

ReadMe.txt

35



Acknowledgement.

We gratefully acknowledge the cooperation with Christian Apprich and Marco Boßle
in many B-spline projects. Moreover, we thank Dr. Joachim Wipper, one of the co-
founders of the WEB-method, for valuable suggestions and Dr. Bernadetta-Kwintiana
Ane for commenting on our program collection from an engineering point of view. Irm-
gard Walter has carefully read various drafts of our documentation and as usual, kept
administrative duties for us to a minimum. Special thanks also to our wives Elisa-
beth and Monika for their support and patience during many weekends and evenings of
program development.

References

[1] G. Apaydin: Finite Element Method with Web-splines for Electromagnetics, VDM
Verlag Dr. Müller, Saarbrücken, 2009.

[2] C. de Boor: A Practical Guide to Splines, Springer-Verlag, New York, 1978.

[3] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs: Isogeometric Analysis, Wiley, 2009.

[4] K. Höllig, J. Hörner, and A. Hoffacker: Finite Element Analysis with B-splines:
Weighted and Isogeometric Methods, to appear in LNCS 6920, Springer, 2011.

[5] K. Höllig and J. Hörner: Programming Multigrid Methods with B-splines,
Stuttgarter Mathematische Berichte, preprint 2011/016.

[6] K. Höllig, U. Reif, and J. Wipper: Weighted Extended B-spline Approximation of
Dirichlet Problems, SIAM J. Numer. Anal. 39 (2001), 442–462.

[7] J. Hörner: Mehrdimensionale numerische Integration für Finite-Elemente-Ver-
fahren mit B-Splines, in preparation.

[8] The MathWorks, Inc.: Matlab - The Language Of Technical Computing,
http://www.mathworks.com/products/matlab/index.html, Website, 2011.

[9] B. Mößner and U. Reif: Stability of Tensor Product B-splines on Domains, J.
Approx. Theory 154 (2008), 1-19.

[10] V. L. Rvachev and T. I. Sheiko: R-functions in Boundary Value Problems in Me-
chanics, Appl. Mech. Rev. 48 (1995), 151-188.

[11] G. Strang and G. J. Fix: An Analysis of the Finite Element Method, Prentice–Hall,
Englewood Cliffs, NJ, 1973.

[12] J. Wipper: Finite-Elemente-Approximation mit WEB-Splines, Shaker Verlag,
Aachen, 2005.

36

http://www.mathworks.com/products/matlab/index.html

	Introduction
	If you do not like to read detailed program documentations …
	Model Problems
	Finite Element Approximation
	Generalized Poisson Problem in Two Dimensions
	Generalized Poisson Problem in Three Dimensions
	Two Dimensional Elasticity: Plane Strain and Plane Stress
	Three-Dimensional Elasticity

	Error Estimation
	Principal Subroutines
	Numerical Integration
	Assembly of the Ritz-Galerkin System
	Solution of the Linear System
	Evaluation of the Ritz-Galerkin Approximation and of its Residual
	Visualization of the Solution

	Auxiliary Programs
	Generalizations
	Demos and Examples
	Convergence Rates for a Smooth Domain [FB, section 6.1]
	L2-Error for Increasing Degree [FB, section 6.3]
	Rvachev's Method for CSG Domains [FB, sections 4.3, 8.3]
	Plane Stress [FB, section 6.6]
	Plane Strain [FB, section 6.6]
	Deformation under Gravity [FB, section 6.5]

	Terms of Use

