03731nam 2200565 i 45000010014000000030005000140050017000190060019000360070015000550080041000700100017001110200030001280200025001580280015001830350025001980350021002230400032002440500028002760820019003041000034003232450291003572640150006483000026007983360021008243370026008453380032008714900042009035040051009455050260009965060072012565201169013285300037024975380036025345380047025705880054026176500021026716500020026926500031027126530022027436530020027656530026027856530024028116530027028357000041028627000037029037100064029407760053030048300043030578560065031009781611974843SIAM20170530190106.0m eo d cr bn |||m|||a170530s2017 pau ob 001 0 eng d a 2017014385 a9781611974843qelectronic z9781611974836qprint50aCS16bSIAM a(CaBNVSL)thg00974226 a(OCoLC)988325943 aCaBNVSLbengerdacJ2IdJ2I 4aTK7874.885b.B67 2017eb04a530.1201/12231 aBorz{grave}i, Alfio,eauthor.10aFormulation and numerical solution of quantum control problems /cA. Borz{grave}i, Universit{uml}at W{uml}urzburg, W{uml}urzburg, Germany, G. Ciaramella, Universit{acute}e de Gen{grave}eve, Gen{grave}eve, Switzerland, M. Sprengel, Universit{uml}at W{uml}urzburg, W{uml}urzburg, Germany. 1aPhiladelphia, Pennsylvania :bSociety for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104),c[2017] a1 PDF (x, 390 pages). atext2rdacontent aelectronic2isbdmedia aonline resource2rdacarrier1 aComputational science and engineering aIncludes bibliographical references and index.0 aIntroduction -- Quantum mechanics and the Schr{uml}odinger equation -- Optimal control theory for quantum systems -- Controllability of quantum systems -- Discretization schemes -- Numerical optimization methods -- Application to quantum control problems. aRestricted to subscribers or individual electronic text purchasers.3 aThis book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the Schr{uml}odinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose-Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods. aAlso available in print version. aMode of access: World Wide Web. aSystem requirements: Adobe Acrobat Reader. aDescription based on title page of print version. 0aQuantum systems. 0aControl theory. 0aSchr{uml}odinger equation. aQuantum mechanics aOptimal control aExact controllability aDifferential models aNumerical optimization1 aCiaramella, G.q(Gabriele),eauthor.1 aSprengel, M.q(Martin),eauthor.2 aSociety for Industrial and Applied Mathematics,epublisher.08iPrint version:w(DLC) 2017012788z9781611974836 0aComputational science and engineering.403SIAMuhttp://epubs.siam.org/doi/book/10.1137/1.9781611974843