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Chapter 1

MATLAB Programming

Computer programming may appear to be a mysterious, esoteric ritual of communicating
with the giant electronic brains of science fiction. At least in the literary imagination,
programmers seldom emerge into the light of day, keeping odd hours, subsisting on pizza
and caffeine, and exhibiting peculiar social ties. Perhaps this image accounts for the dearth
of female undergraduates that choose Computer Science as a college major and the lack
of graduates with programming credentials.

From my perspective, as a computational scientist,1 the computer itself is secondary;
it is just a tool that we use in doing science. What matters is solving problems. How
to do this, the techniques, methods, and insights, constitute the toolbox of the compu-
tational scientist. The research effort, in collaboration with other scientists, is often the
assemblage of a computer program, or a code. Code is inherently communal, and, thus,
it should be readable and read by other people. Code is not just for the computer to in-
gest but, more fundamentally, a community science document for other researchers to
digest. The digital age and science in the digital age have not yet come to grips with the
implications of computational science. Considerable misunderstanding and resistance to
recognizing the role of modeling and simulation continues in many scientific disciplines.
Much of the practice of software engineering, digital object tagging, and open information
is still evolving, with programmers creating much of what we experience today.

I was often asked, when I was directing research programs, why we couldn’t just hire
a bunch of programmers to do climate modeling. Typically, the qualifications for a com-
putational climate scientist involve an advanced degree in atmospheric science, physics,
chemistry, or mathematics in addition to computer expertise. My experience has been
that it is easier to teach someone how to program than it is for them to absorb a new area
of science. Some of the data abstractions, as well as language abstractions, that computer
science teaches are important for advanced programming practice, but the elegance and
simplicity of a program is first and foremost an expression of the programmer’s ability
to break the tasks into steps and to organize these in a logical sequence. The teaching
of programming should not be complicated with too much abstraction or syntax, and I
maintain that the best way to learn the tool is to start to use it.

1Computer scientists are not necessarily computational scientists. That is, the science of computing is dif-
ferent than doing science with computers.

1
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I had the good fortune in my own training to work and study with some of the pio-
neers in computing.2 Programming is something you learn by doing, and in the spirit of
these computational pioneers who tried to solve problems, I will present examples quickly
leading to substantial and useful problems.

1.1 What is Programming?
Computer circuits are limited in the operations they can perform. These operations have
remained nearly constant even as the number of transistors and switchs on a chip has
increased exponentially over the past several decades.3 What computers do at the basic
machine instruction level is move the contents of a register to memory (store), retrieve
contents from memory, and add or multiply two binary numbers that are in different
registers. By grouping various collections of these commands or instructions together,
more sophisticated tasks are performed, such as division, square roots, printing, graphics,
and solving linear equations. The sequence of these instructions also requires some way
to make decisions—to branch in the sequence of instructions based on some condition.
The simplest condition is a test of whether a number is positive or negative.

Here, in Figure 1.1, is a simple program that prints the phrase “Hello World” depend-
ing on the value of the sign of the variable awake . The first three lines start with a % sign

% Comment: First program that prints Hello World
% Written by me
% Date: today

awake = 1;
string = ’Hello World’;
if awake > 0

display(string);
end

Figure 1.1. This first program simply prints the phrase “Hello World.” By entering it and
running it you will have figured out the basics of editing a program, some fundamental programming
syntax, and how to execute or run a program. Though the program is trivial, these other things are not.

indicating that what follows is a comment. The computer skips over comments, which
are strictly for human consumption. Comments can appear anywhere in the program
and include all the characters on the line after the %.

Let’s explain the details of the rest of the program. Each line (or group of lines) is
an instruction for the computer to do something. An instruction in MATLAB typically

2Michael Kennedy wrote a popular text introducing programming with ten simple statements. He was my
supervisor in one of the first computer graphics labs on an academic campus. The University of Kentucky
College of Architecture had serial number 35 of the Digital Equipment Corporation GT-40 computer in 1972.
The graphics workstation was a PDP-11 hooked to a cathode ray tube as the display device. We programmed
assembly language routines by toggling in octal codes. Programming became much easier as compilers and
peripheral interfaces were developed for the machine. As a student I got to meet Rear Admiral Grace Hopper,
who was the first to conceive of machine independent languages and develop a compiler. Henry Thatcher was
the first to teach me numerical analysis, the art of performing mathematical calculations in finite arithmetic.
Others to whom I owe a debt for my training in computational science include John Rice and Walter Gautchi
at Purdue as well as Rolf Jeltch from his early days of teaching at the University of Kentucky.

3Gordon Moore conjectured in 1965 that the number of transistors on a printed circuit board would double
about every two years. This became known as Moore’s Law. As the size of the circuits shrank and clock speeds
got faster, the speed of computation also increased proportionally. With all the technological improvements, a
doubling of computing capacity has occured every 18 months for the last half century.
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ends with a semicolon. The first executable instruction puts the numeric value 1 into
a memory location with the variable name awake. The second line assigns the variable
named string with the character string value ’Hello World’. A single quote is used to
indicate a character string. The equal sign is really an assignment operator, an instruction
that assigns a value to the variable on the left side of the equal sign. (Note that "1 =
awake;" does not work. It is a syntax error.)

The first two lines illustrate two different data types in MATLAB. The first is a number
and the second a character string. The variables on the left-hand side of these take on the
data types of the constants that are assigned to them. MATLAB uses implicit typing of
variables in this way. Many languages, for example, FORTRAN or C, encourage explicit
typing for clarity. MATLAB has a unique feature in that variables are treated as matrices.
The MATLAB language was developed with linear algebra in mind. Even though it makes
no sense in this program, awake is a 1× 1 matrix.

The third instruction is an if statement, a conditional or control statement. If the ex-
pression following the if is true, then the next statement is executed. If the expression is
not true, then the program control drops through without executing the display. This
program control gives the sense of execution following the sequence of commands in the
program with different sequences depending on the values of the variables in the program.
Conditionals offer much of the power and flexibility for problem solving in program-
ming, and in this way the input to the program may change the processing and output of
the program. Clearly, the input to this program is minimal—the setting of awake to one.
And the output is also minimal—the printing of the phrase “Hello World.” A computer
program is nothing more than a sequential list of instructions.

As a programmer, you may use many short cuts. For example, in MATLAB any type
of variable will display itself simply by invoking it on a line. So we could have used string
inside the if. We could also save space by putting more than one instruction on a line. So
the first two instructions, each ending with a semicolon, could be combined on a single
line.

Exercise 1.1.1. As a first programming exercise, Hello World appeared in the classic book
The C Programming Language by Kernigan and Ritchie. Enter the program into a file
named “hello.m”. Using the edit screen within MATLAB, run the program. Modify the code,
for example, changing the value of awake, to become familiar with the way to edit and use
MATLAB. Also note the “Help” menu within MATLAB that you may use as a reference on
syntax, commands, and programming.

1.2 What is MATLAB?
The MathWorks company4 developed MATLAB for exploration of numerical methods
and to make computers accessible to students for linear algebra and complex numerical
calculations. It is an interpretive computer language and program development environ-
ment, meaning that each instruction in a program is first interpreted and then executed
before the next instruction is processed. It is as if each line were entered in the command
window. A compiled language translates all the instructions to machine code before start-
ing the execution. The MATLAB system offers a rich set of commands and toolboxes for
programming and scientific computation. The extent of what is available is quite impres-
sive, especially as personal computers have become faster and more powerful, allowing
the feasible number of calculations to expand.

4See www.mathworks.com.
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The program development environment of MATLAB provides everything you need
to create, debug, and use your program. In the command window, you will notice an abil-
ity to compute interactively. We will not use the command window much. Instead we
will edit MATLAB program files (files that end in the suffix .m), creating programs that
perform more complex calculations. MATLAB also has the ability to add new user de-
fined data objects to the MATLAB structure, creating what appear to be extensions to the
language. This is extremely useful and is supported by the object oriented programming
language.

Several toolboxes offer added capabilities for climate modeling. In partiuclar, the map-
ping toolbox is important since we are interested in displaying information about the
earth with coastlines clearly delineated. The various map projections are built into the
functionality of the toolbox, relieving us of the need to develop all the formulas for display
of geographic information.

The Hello World code introduces input and output steps with no computation be-
tween. For analysis of climate data the steps quickly generalize to reading data and dis-
playing graphical results. As a more useful illustration of computation, the next program
looks at the relationship between temperature and CO2 data from the Vostok ice cores.

Exercise 1.2.1. The Vostok ice core data covers what time period? How can you get the data?
After obtaining the data plot CO2 versus ΔT , and dust versus ΔT . According to the data
what should the present ΔT be, based on a current CO2 concentration of 400 ppm? What
about for 450 ppm? How would you characterize the “error bound” on your projection of
global warming?

The temperature data for the Vostok ice cores is contained in a file called vostok.temp
and appears as two columns of numbers, the time before present and the temperature
difference from the current Vostok surface average of 55oC . The second file with the same
structure, though with different times than contained in the temperature data, contains
the CO2 data and is called vostok.co2. The program must first read these files and store
the data in appropriate arrays for plotting. The program that reads the files and creates a
plot of the data is shown in Figure 1.2

% Open the data files and read columns into arrays.
tempID = fopen(’vostok.temp’);
co2ID = fopen(’vostok.co2’);
Temp = fscanf(tempID,’%f %f’,[2 inf]);
Temp= Temp’;
plot(Temp(:,1),Temp(:,2))
pause
CO2 = fscanf(co2ID, ’%g %g’,[2 inf]);
CO2= CO2’;
plot(CO2(:,1),CO2(:,2))
pause
fclose(tempID);
fclose(co2ID);

Figure 1.2. Open two files and read two columns of numbers, time, and value. To see that
the data have been captured, some simple plots of temperature and CO2 levels are created.

To create the temperature versus CO2 plot requires that values be interpolated to the
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same times. The interpolation is handled in the next fragment of code, Figure 1.3. Finally,

% Plot Temp vs CO2
maxtime1 = max(Temp(:,1));
maxtime2= max(CO2(:,1));
maxtime = min(maxtime1,maxtime2);
mintime1= Temp(1,1);
mintime2= CO2(1,1);
mintime = max(mintime1,mintime2);
% Interpolate linearly
ntimes = 100;
Tunif = zeros(ntimes);
Cunif = zeros(ntimes);
dt = (maxtime - mintime)/(ntimes-1)
time = mintime;
for n = 1:ntimes

Tunif(n) = interp1q(Temp(:,1),Temp(:,2),time);
Cunif(n) = interp1q(CO2(:,1),CO2(:,2),time);
time = time + dt;

end

Figure 1.3. MATLAB creates the arrays Tunif and Cunif by first storing zeros in them. This
saves time in the for-loop since the elements do not have to be appended one at a time. The MATLAB
interpolation routine interp1q performs a linear interpolation between the data values.

the two arrays of interpolated temperature and CO2 data are used to create a final plot;
see Figure 1.4. The plot produced by this program is shown in Figure 1.5.

% Plot the correlation TvsC
plot(Tunif,Cunif,’ok’,...

’LineWidth’,2,...
’MarkerFaceColor’,’k’,...
’MarkerSize’,8)

axis([-10 5 100 400])
xlabel(’Temperature Difference (C)’,...

’fontsize’,12,’fontweight’,’n’,’color’,’k’)
ylabel(’Atmospheric CO2 (ppm)’,...

’fontsize’,12,’fontweight’,’n’,’color’,’k’)

Figure 1.4. Specifying the fonts and axis labels is done by assigning various values to the plot
properties. This is a black and white plot according to the color ‘k’.

Keeping with the theme of useful input and output, the following sample code, Fig-
ure 1.6, takes advantage of the NetCDF capabilities within MATLAB to read monthly
averaged Reanalysis Data from NCEP5 and display this data on a map. The program it-

5The National Center for Environmental Prediction (NCEP) is the weather service for the United States.
NCEP provides globally gridded data sets of the monthly average values for weather variables such as pressure,
temperature, and precipitation as well as three dimensional fields useful for modeling and other scientific studies.
These are called Reanalysis Data because they have been interpolated from actual observations under the con-
straints of a physical model. The other comparable dataset of the past climate system is the ERA-40 Reanalysis
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Figure 1.5. Plot of interpolated Vostok temperature versus CO2 data from the present time
to 160,000 years ago.

self is an example of simple input and output with no computation in between. But the
ability to look at weather and climate data is a prerequisite to modeling. How else could
we know what we are trying to model, or how good a job we are doing at reproducing
the observed system?

A word about NetCDF, its origin, and role in climate research. The ability of a com-
puter program to read data generated on a different computer using a different program
is nothing short of remarkable. We have become used to interoperability as a standard
on the Internet with formats like HTML for web pages and XML, forgetting the years of
community effort to define the standards. The NetCDF acronym stands for “Network
Common Data Form” and consists in a set of interfaces for array-oriented data access. It
has been implemented in libraries for C, Fortran, C++, Java, and other languages.6 This
self-describing, machine independent format was developed to support the National Cen-
ter for Atmospheric Research in Boulder and the broader goal of sharing scientific data
across research programs sponsored by the National Science Foundation. Other institu-
tions and agencies have developed similar formats such as GRIB and HDF.

Exercise 1.2.2. Use the NCEP Reanalysis data for monthly mean temperatures (see Figure
1.8) to compute global surface air temperatures for different months and annually. The changes
in the global temperature are of what magnitude? Compute and display the sea level pressure
(slp) anomalies with the difference being computed from the average of the 1960–1980 period.
What are the monthly standard deviations?

Data, but we will not use that here.
6UNIDATA (http://www.unidata.ucar.edu) supports and makes these available.
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function NCEPcdfPlay(fp, field)
%Usage: NCEPcdfPlay(’filename’, ’field name’);
% Cracks open the NCEP Reanalysis file in NetCDF format
% MATLAB netcdf intrinsics are used to extract fields
% and the Mapping Toolbox is used to produce a visual of the field
%Inputs example fp=’pres.mon.mean.nc’; field=’pres’;
% ......... or fp=’air.mon.mean.nc’; field=’air’;
% ......... or fp=’rhum.mon.mean.nc’; field=’rhum’;
% ......... or fp=’slp.mon.mean.nc’; field=’slp’;
%
ncid = netcdf.open(fp,’NC_NOWRITE’);
%Get the info from the file
[numdims, numvars, numglobalatts, unlimdimID] = netcdf.inq(ncid)
%Get the names of the variables.
for i = 0:numvars-1
[varname, xtype, varDimIDs, varAtts] = netcdf.inqVar(ncid,i)

end
% Get the lat and lon arrays
varid = netcdf.inqVarID(ncid,’lat’);
lat = netcdf.getVar(ncid,varid);
varid = netcdf.inqVarID(ncid,’lon’);
lon = netcdf.getVar(ncid,varid);
% Create big Xlon and YLAT arrays
[Xlat,Ylon] = meshgrid(lat,lon);
%
% Get variable ID of the field variable requested, given its name.
varid = netcdf.inqVarID(ncid,field);
% Get the dimensions of the field array
[dimname, nlon] = netcdf.inqDim(ncid,0)
[dimname, nlat] = netcdf.inqDim(ncid,1)
[dimname, ntimes] = netcdf.inqDim(ncid,2)
% Get the value of the field variable, given its ID.
F = netcdf.getVar(ncid,varid);

Figure 1.6. The NCEP monthly data is contained in NetCDF files that MATLAB can read
using built in functions. Input to the function is the file name and the variable name to display. Typically,
more than one month is included in each file so a movie is created of the ntimes snapshots.

1.3 Object Oriented Programming
Computer languages have become increasingly powerful as new abstractions and com-
mands have been added. The ability of the user, that is you, to define new data types is
perhaps the biggest advance. The computer then works on and with these new objects in
ways the programmer may specify. In MATLAB the intrinsic object is the matrix, and
there are many methods and operations to manipulate and calculate with matrices. But
what objects are natural for you to work with? The MATLAB Object Oriented Program-
ming allows you to define your own data types and methods to work with those types.
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%
% Display using the Mapping toolbox
clf;
axesm (’miller’,’Frame’,’on’,’Grid’, ’on’);
coast=load(’coast’);
geoshow(coast);
for it = 1:ntimes

Fit = double(F(:,:,it));
geoshow(Xlat,Ylon,Fit,’DisplayType’,’texturemap’);
hcb = colorbar(’horiz’);
set(get(hcb,’Xlabel’),’String’,’NCEP Reanalysis Data’);
pause

end
end

Figure 1.7. Continuing with the NCEPcdfPlay function, the display portion uses the MAT-
LAB Mapping toolbox. Coasts are added to the plot, and a Miller projection is used.

Figure 1.8. NCEP Reanalysis data for monthly mean surface air temperature (C).

In later chapters we will define our own data types. MATLAB looks for these user
defined types in a directory called @my_classes. As you might imagine, the syntax and
rules for specifying a new type are somewhat involved, and each object oriented language7

has its own style. Until we need more complex data types, a new programmer should be

7The C++ language is the first and most advanced object oriented language. Others such as Java try to
simplify the syntax by restricting some of the abstraction. Languages such as MATLAB and FORTRAN have
added object oriented features but do not support many of the abstractions of C++.
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aware of the following rules of thumb:

• “If you can think of ‘it’ as a separate idea, then make it a class.”

• “If you can think of ‘it’ as a separate entity, then make it an object of a class” [23,
p.10].

As new abstractions are introduced we will discuss why they make good sense. You can
slice a cake many ways, and it is a matter of discretion which new concepts and syntax
should be introduced. These may seem arbitrary at first.

1.4 A Cultural Note
The important quality of an abstraction is that it can be easily understood by the program-
ming community that will use it. Since it is difficult to guess the most useful abstractions,
the design of code architecture is iterative and fluid. Code is almost always developed by
a team, and, for this reason, I encourage students to engage in collective efforts from the
beginning of their projects. Planning the code architecture and developing suitable ab-
stractions are best done with multiple inputs and perspectives. Working alone, there is
no incentive to make your code readable, and, in consequence, no one, including yourself,
will be able to read it at the conclusion of the project.

Large scientific code projects often involve tens to hundreds of team members, and
maintaining, updating, and developing the capabilities on multiple computing platforms
require software engineering discipline. An introduction to this discipline may be gained
by using a version control system such as subversion to guarantee that team members’
work is not lost or accidentally overwritten in coordinating code modifications. The
simple version of subversion is the act of checking out code and on checking it back in to
resolve conflicts. Testing procedures, though not required by the version control, are a
next step in the development of a productive culture of programming. Though seemingly
cumbersome at first, programmers learn to trust one another and gain confidence in their
abilities based on the agreed upon procedures and coding conventions.



Chapter 2

What Is the Global
Average Temperature of
the Earth?

Some controversy persists over what a global average temperature is and how it can be
meaningfully estimated. Since this is the key quantity used in discussing global warm-
ing, it is a topic that we should try to be clear about. The mathematics of this average
should be the easy part, but this is complicated by the scattered collection of temperature
observations over the surface of the globe.

The thermodynamics of the global temperature and warming is quite complicated,
but, using a few simplifying assumptions, we can start to make sense of it.

2.1 Mathematics of a Global Average
The global average temperature, TS , is an integral over the surface of the earth. Thinking
of the surface of the earth as a sphere, S2, the integral can be written

TS =
1
|S2|
∫

S2

T dA. (2.1)

This notation needs to be explained, and the way in which global integrals could be com-
puted needs to be described.

Suppose that temperature is given as a function of longitude (λ) and latitude (φ). The
global integral of temperature is

∫ 2π
0

∫ π/2
−π/2

T (λ,φ)a2 cosφdφdλ. (2.2)

The computation of integrals is accomplished through numerical quadrature rules. A
quadrature rule specifies a set of points at which the function is evaluated and a set of
weights associated with each of these points. The integral of the continuous function is
then approximated by a finite sum of the discrete values,

∫
S2

f dA≈
I∑

i=1

wi f (xi ). (2.3)

How to choose the location of the points and the values of the weights is an interest-
ing numerical analysis study. Simpson’s rule chooses the endpoints and midpoints of an

10
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interval weighted with 1
3 , 4

3 , 1
3 . The way in which the weights are derived involves inter-

polating the point values with a quadratic polynomial and then explicitly integrating this
approximation.

The integral may be viewed as a linear transformation (linear functional) that maps a
discrete representation of the function into the reals. As such we look for a basis in which
to express the matrix of the linear transformation. Let

L( f ) =
∫ 1
−1

f (x)d x, (2.4)

where f is a polynomial of degree 2. The polynomials span a vector space with the usual
definitions of polynomial addition and multiplication by a scalar. A basis for these poly-
nomials is given by 1, x, x2. For these basis vectors, L(1) = 2, L(x) = 0, L(x2) = 2

3 . In
Simpson’s rule the xi are the left, middle, and right points of the interval, so x1 =−1, x2 =
0, x3 = 1, and the set of equations for the weights is

w1 · 1+w2 · 1+w3 · 1= 2= L(1), (2.5)
w1 · (−1)+w2 · 0+w3 · 1= 0= L(x), (2.6)

w1 · 1+w2 · 0+w3 · 1= 2
3
= L(x2). (2.7)

The solution for the three unknown weights from the three simultaneous equations is the
Simpson’s rule weights. The matrix representing the linear transformation L( f ) :ℜ3→ℜ
is then �

1
3

,
4
3

,
1
3

�⎛⎝ f (−1)
f (0)
f (1)

⎞
⎠= 1

3
f (−1)+

4
3

f (0)+
1
3

f (1). (2.8)

There is a magical piece of mathematics that answers the following question: Can the
accuracy of the formula be improved if the weights and the evaluation points are chosen
together? The optimal answer is provided by the Gauss quadrature rules. As an example,

consider the weights 5
9 , 8

9 , 5
9 together with the Gauss points −



3
5 ,0,+



3
5 . The accuracy

should be good for polynomials up to degree 2 · 2+ 1.
To compute an integral on the sphere, an analogous approach to quadrature rules

may be followed. The longitudinal integration may be approximated with equally spaced
points, and the latitudinal integration may use a different rule. Gauss quadrature rules
are the norm for spectral models as they give the highest accuracy numerical approxima-
tion for functions defined on a sphere. But for equally spaced data on a lat-lon grid the
trapezoidal rule is more appropriate. You have to remember about the area weighting,
however, as points near the pole would incorrectly contribute more heavily to the sum
than points on the equator unless weighted by area.

Exercise 2.1.1. Write a MATLAB program to evaluate spherical integrals using these ideas.
Check your answer by computing the surface area of the sphere and some other function that
can be integrated analytically. How accurate is your method?

The time variation enters a calculation of the earth’s average temperature because we
must ask over what period the average is taken. An easy way out is to consider time
averaging as well as spatial averaging. In this way we can talk about the yearly average or
monthly averages or even seasonal averages. For climate change discussions, we usually
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average over a 20 or 30 year period as shorter periods do not sample the natural interannual
variations with enough points. The average over a time period [t 0, t N ] is an integral

Tave =
1

(t N − t 0)

∫ t N

t 0

T (t )d t �=
N−1∑
n=0

1
(t n+1− t n)

∫ t n+1

t n

T (t )d t . (2.9)

But is this the same, or not, as the average of monthly averages? How can you account for
the fact that the months have different numbers of days? You have to think before you
take an average of averages. What does the Central Limit Theorem say about this?

2.2 Analysis of Global Warming
The recent temperature of the earth shows a warming with a regional signature. The high
latitude regions in the Northern Hemisphere are warming more rapidly than the ocean
moderated Southern Hemisphere or the lower latitudes. But why take my word for it?
You can analyze the monthly fields for yourself.

Exercise 2.2.1. Use the NCEP Reanalysis data for monthly mean temperatures (see Figure 1.8 )
to compute average surface air temperatures for different months and annually. The changes in
the global temperature are of what magnitude? Use an approximation for the spatial integral
over the sphere to calculate the global average temperature.

2.3 Numerical Solution of Ordinary Differential Equations
Before we can describe a dynamical model for the global average temperature, we need
to know something about solving ordinary differential equations (ODEs). A first order
ODE is an equation that involves the first derivative of a function. So if the unknown
function is u(t ), we can write a general form as

u ′ = f (u, t ), (2.10)

where f (u, t ) is a given function of both the unknown u and t . (We use the prime to
denote the derivative d u

d t .) ODEs always come with another condition. For first order
equations, the condition is typically an initial condition that specifies the value of the
unknown function at some beginning time, e.g., u(0) = u0.

Numerical solution of this equation can be derived in at least two ways: by approx-
imating the derivative or approximating an integral. Let un = u(t n) be a shorthand
notation for the value of the unknown function u at the time t n . The numerical so-
lution will find the values of the unknown function at the discrete set of time points,
t = t 1, t 2, . . . , t n , . . . . To approximate the derivative of u at time t n , expand u in a Taylor
series about this point.

u(t n+1) = u(t n)+ u ′(t n)(t n+1− t n)+ u ′′(t n)
(t n+1− t n)2

2
+ . . . . (2.11)

Solving for the first derivative gives

u ′(t n) =
u(t n+1)− u(t n)

t n+1− t n
− u ′′(t n)

(t n+1− t n)
2

+ . . . . (2.12)

The discrete approximation drops the higher order terms

un+1− un

Δt
≈ u ′(t n) = f (un , t n) (2.13)
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and commits an error proportional to the stepsize Δt = t n−1 − t n . Or, expressed as an
advance over a time step,

un+1 ≈ un +Δt f (un , t n). (2.14)

Using the fundamental theorem of calculus, the ODE can be integrated over the time
interval [t n , t n+1] as

un+1− un =
∫ t n+1

t n

u ′(t )d t =
∫ t n+1

t n

f (u(t ), t )d t . (2.15)

A numerical approximation of the integral also gives a numerical method for time step-
ping (or integrating) the ODE. The method derived from the Taylor expansion is called
Euler’s method and corresponds to approximating the integral as

∫ t n+1

t n

f (u(t ), t )d t ≈Δt f (u(t n), t n), (2.16)

a left side rule. This method is an example of an explicit method, since the new time values
are computed explicitly using old time values. By introducing an integral approximation
that includes f evaluated at the new time level,

∫ t n+1

t n

f (u(t ), t )d t ≈Δt f (u(t n+1), t n+1), (2.17)

an implicit method results. Since the value of u(t n+1) is unknown, a nonlinear equation
involving f must be solved for implicit methods. Using a trapezoidal or Simpson’s rule
gives a more accurate approximation, resulting in other implicit methods.

Exercise 2.3.1. Write a MATLAB code to solve the ODE u̇ = u with initial condition
u(0) = 1.0. Use both the explicit and implicit Euler methods before experimenting with the
built-in MATLAB ODE solvers.

The structure of an ODE solver must address the question of how the right-hand side
function is communicated to the solver. The calling program passes a function handle in
this example of the implicit Euler method with a Picard, fixed point iteration used for
solving the nonlinear system of equations.

The function is included in the same file and for the test problem is specified as

⎛
⎝ u1

u2
u3

⎞
⎠
′
=

⎛
⎝
�u1

cos(u2)
u3

⎞
⎠ . (2.18)

The implicit Euler code requires that some information be held in an accessible place
in order to call the Picard iteration code with the same function handle method.

2.4 A Simple Dynamic Model
We can develop a simple, box model [5] of the earth system by subdividing into atmo-
sphere and ocean. Since we are ignoring the land, we call this an aqua-planet, which is not
too bad an assumption given that 70% of the earth’s surface is covered by water. Let Ta
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function ImpEulerTest
% Implicit Euler ODE method for u’ = f(u,t), u(0)= u0
% calls the Picard iteration with iteration formula in function F
% State variables, u(:,2) are held at two time levels, n and np1
%
% Initialize
tend = 1.0;
nsteps= 100;
dt = tend/double(nsteps);
time = 0.0;
n=1; np1=2; m = 3; % m the dimension of the solution vector
% Set up initial conditions
u = ones(m,2);
uout = zeros(nsteps,m);
tout = zeros(nsteps);

% Run
for nstep = 1:nsteps

[u(:,np1)]=ImpEulerStep(@f, u(:,n), dt, time);
time = time + dt;
uout(nstep,:) = u(:,np1);
tout(nstep) = time;
ntmp = n; n =np1; np1 = ntmp; % Swap time level pointer

end
% Finalize
plot(uout);
err = uout(nsteps,3)- exp(1.0) % simple error measure

end

Figure 2.1. For each of nsteps integrating from the initial time to the end time, using the
time step d t , the solution is advanced using an implicit Euler method. To avoid copies of the solution
between the n and n+1 time levels an index pointer is used. These kinds of tricks are common practice
in coding for efficient and fast execution, but they make the code harder to read.

function uprime =f(u,t)
% Function for ODE right hand side

uprime = transpose([ sqrt(u(1)), cos(u(2)), u(3)]) ;
end

Figure 2.2. The solution is an m= three vector, and the forcing right-hand side consists of
three familiar functions.

and To be the time dependent temperatures of the atmosphere and the ocean. The fluctu-
ation of the global average temperature is modeled using an ODE. The equation is solved
numerically using a time integration method such as the explicit Euler method. Values of
the parameters can be modified to study the sensitivity of the earth’s average temperature.

The model equations are

Ca
dTa

d t
+ f (Ta) =Q + cao(To −Ta), (2.19)

where

• Ta is the global average atmospheric temperature change from an reference value
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function [unp1] = ImpEulerStep(f, un, dt, time)
% Implicit Euler Step of ODE method
% update follows u^{n+1} = u^n + dt*f( u^{n+1},t^{n+1} )
% Solve the nonlinear (implicit) equation using a Picard iteration
%

global dtEuler; % the internal step used by the method
global tEuler; % time for funtion evaluation
global uold; % old value for Euler method function

% Initial guess
dtEuler = dt;
tEuler = time;
uold = un;
uk= un;
tol =1.d-3;
maxits = 100;
[unp1,err, fpnorm,nits] = PicardIter(@F,uk,tol,maxits);

% Display solution and errors
% unp1
% err
% fpnorm
% nits
end
function [ukp1] = F(uk)
% Iteration forumula for Backward Euler
% for the ODE u’ = f(u,t)
% The variable dt is global and set in the calling program

global dtEuler;
global tEuler;
global uold;
ukp1 = uold + dtEuler* f(uk,tEuler) ;

end

Figure 2.3. The ImplEulerStep needs to communicate the old solution value, time, and the
time step to the Picard iteration function ‘@F’ which specifies the nonlinear, fixed point equation to be
solved or iterated. This communication has been accomplished by declaring several variables global in
scope so that other functions can access their values. A variables scope in MATLAB is usually contained
only within the function.

(Kelvin);

• Ca is the atmospheric heat capacity (J/m3.K )*depth(m) (0.75× 103)*depth;

• f (T ) is the net radiation change at the tropopause due to internal dynamics of the
climate system;

• Q is the change in net radiation crossing the tropopause from the reference value;

• cao = 14.2(W /m2.K),

Co
dTo

d t
= cao(Ta −To); (2.20)

• To is the global average (mixed) ocean temperature change from an reference value
(Kelvin);
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• Co is the total system heat capacity of deep ocean.

If the sun is assumed to give a constant input, then Q=0. The effect of extra absorption
of long wave radiation by elevated CO2 might increase the atmospheric heat source Q.
The function f(T) can take various forms. We will use the form f (T ) = ( fb+ fw+ fi+ fd )T .
The term represents the feedbacks in the climate system. A positive coefficient gives a
negative feedback and tends to stabilize the temperature. A negative coefficient gives a
positive feedback and will cause the temperature to grow. The coefficient fb represents
the black body radiation from the earth to space and can be computed using the Stefan–
Boltzmann law. The coefficient fw represents the effect of water vapor on radiation. Wa-
ter vapor (a greenhouse gas) absorbs long-wave radiation. The coefficient fi represents the
effect of ice reflecting incoming light, and fd is the effect of dust.

Values given in various references are as follows:

• f b = 3.75(W /m2K);

• f w =−1.7(W /m2K);

• f i =−0.8(W /m2K) [Budyko [1] and Sellers [21], 1969] , = -0.3 (W /m2K) [Lian
and Cess [17], 1977], = −0.66 (W /m2K) [Robok [20], 1983], = −0.44 (W /m2K)
[Chou et. al. [3], 1982];

• f d = 0.75(W /m2K) dust in the atmosphere.

Other values can be set from

• C = d e pt h(3.35x106(J/m3K)) [Sellers [21], 1969] or C = 1.06(W y r./m2K) with
depth= 10m;

• Q = 4.0(W /m2) [Ramanathan [19], 1989] due to greenhouse warming. Q can
also vary according to variations in the solar constant. This is most affected by the
orbital precession.

Much of climate science can be thought of as uncertainty about the processes lumped
into f(T). The Fourth Assessment Report (AR4) of the IPCC presents the diagram in
Figure 2.4 for the different factors in the radiation balance.

Exercise 2.4.1. Write a MATLAB program to compute the solution to the coupled set of
differential equations. Use this program to address various questions:

1. The depth of the ocean that interacts with the surface temperature is also a puzzle that
directly affects the value of C. What happens if the depth is 100m or 1000m instead of
10m?

2. What is the climate sensitivity of this model under a doubling of CO2? What is the
timescale of the doubling response?

3. Modify the model to simulate a variable solar input with a periodic function in time
modeling the earth’s precession. Can you compute Milankovich cycles?

We will now discuss a MATLAB code simulating the global average temperature
(GAT.m) of the earth system by implementing this simple energy balance and feedback
model. The code introduces MATLAB class structures defining a linear dynamical system
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Figure 2.4. Global Radiative Forcing. Source: IPCC - AR4 Working Group 1 [22].

class (@lds) with the state variable as the atmosphere and ocean temeperature. The pro-
gram will be divided into three phases: begin, run, and finalize. It is helpful for longer
programs with many components to organize the computation into these phases just for
clarity of programming. The initialization of the data structures and the problem are set
up in the begin phase.

The linear dynamical system class is one of our user defined types. The dynamics are
represented as a linear dynamical system with u as the state of the component, x as the
input to the component, and y as the output of the component. This class defines the
dynamics in terms of matrices so that

u̇ =Au +B x(dynamics), (2.21)
y =C u +D x(observables). (2.22)

For nonlinear systems the right-hand sides are replaced,

u̇ = f (u, x, t ) and y = g (u, x, t ). (2.23)

The abstraction of a dynamical system is very powerful in classifying variables as input
(forcing) variables and outputs (observables), while the internal state of the system is per-
haps unobservable and hidden. Of course it is usually the state variables that appear in
the equations of physics and that we are most interested in.

The syntax for specifying the user defined l d s type is intuitive but complicated. We
encourage the student to look at the code contained in the folder my_classes/@lds and read
the MATLAB help about Object Oriented Programming.

The run phase of the program advances the dynamics through a series of time steps
by calling an integration method such as explicit or implicit Euler in step.

The finalize phase of the code wraps things up and displays results. Figure 2.8 shows
the response to CO2 forcing as a temperature difference. The plotting of the dynamics
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function [c, time, dt, nsteps] = LGAT_begin(c)
% Begin/Initialization method for LGAT

Tatm = 0.0; Tocn = 0.0 ;% initial temperature anomaly
dt = 0.01; % year (suggest dt =0.01,
tend = 10; % year to end (suggest tend = 10)
time = 0.0;
nsteps = tend/dt; % number of steps to take
c = lds(’earth’); % linear dynamical system class
c = setstate(c,[Tatm;Tocn]);
u = getstate(c);
Tatm(1)= u(1); Tocn(1) = u(2);

% Initialize coupled dynamics
depthatm = 10000.0; % depth of atmosphere (meters)
depthocn = 100.0; % mixed layer depth ocean (meters)
Ca =750.0 *depthatm ; Co = 3.35e6*depthocn; % (J/m3K)*meters
fb = -3.75; fw = 1.7; fi = 0.8; fd = -0.75; % W/m2K
ftot = fb + fw + fi + fd;
cao = 14.2; % W/m2K

% Load the dynamics matrices
AA = [ (ftot - cao)/Ca, cao/Ca ; cao/Co, -cao/Co] ;
BB = [1.0/Ca, 0.0 ; 0.0, 0.0];
CC = [1.0, 0.0 ; 0.0, 1.0];
DD = [0.0, 0.0 ; 0.0, 0.0];
c = setdynamics(c,AA,BB,CC,DD);

end

Figure 2.5. The begin phase of the linear global average temperature model where initializa-
tion of the dynamical system takes place. The method setstate assigns values to the hidden state variables,
while getstate retrieves them for public display. The action of the linear dynamical system is defined
through the matrices A,B ,C , and D that are denoted by AA,BB ,C C , DD in the code.

phase space plots the temperature of the atmosphere against the temperature of the ocean
as a curve.
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function [Tatm, Tocn ] = LGAT_run(c, time, dt, nsteps)
% GAT_run: run method for Global Average Temperature (anomoly)

Tatm = zeros(nsteps);
Tocn = zeros(nsteps);

% Start the timestepping loop
for nstep = 2:nsteps

% Set the input (forcing)
Q = 4.0; % anomolous energy balance (W/m2)
x=[Q ;0.0] ;
dts = dt*(60*60*24*365); % Convert years to seconds

% timestep units match Q
c = step(c,time,dts,x);
time = time + dt % Update time and print
y = getobservable(c);

% u = getstate(c); % Since observable is state no need
% to retrieve the state

Tatm(nstep) = y(1);
Tocn(nstep) = y(2);

end
end

Figure 2.6. The run phase manages the timestepping and advancement of the dynamical
system through the step method. Observables are retrieved using the getobservable method, and the
time history is saved in the Tatm and Tocn arrays.

function LGAT_final(Tatm, Tocn, dt, nsteps)
% Finalize method of LGAT
% Plot the time series

taxis = 0: dt : (nsteps-1)*dt ;
plot(taxis, Tatm, taxis, Tocn)
xlabel(’Years’)
ylabel(’\Delta Temperature’)
title(’Earth Atm and Ocn Temperature Change’)
pause

% Plot the state space
plot(Tatm, Tocn)
xlabel(’Tatm’)
ylabel(’Tocn’)
title(’Earth Phase Space’)

end

Figure 2.7. The final method plots the solution produced by integrating the dynamical system.
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Figure 2.8. Atmosphere and ocean warming in response to increased greenhouse gasses ac-
cording to the simple Linear Global Average Temperature (LGAT) model. The ocean temperature lags
behind the atmospheric temperature.



Chapter 3

Approximation of the
Advection-Diffusion
Equation

Exercise 3.0.2. Use the control volume discretizations to numerically solve the advection
diffusion equation

∂ u
∂ t
+v ·∇u = α∇2u + f in [0,2π]× [0,2π]. (3.1)

Let v be a given velocity vector field, v = (sin x, cos y), with doubly periodic bound-
ary conditions u(0, y, t ) = u(2π, y, t ) and u(x, 0, t ) = u(x, 2π, t ). Choose the initial con-
ditions as u(x, y, 0) = 0 and integrate forward in time to t = 10 days with a diffusion
coefficient α = 1. Suppose that f is a point source (δ-function) at the center point and
f (π,π, t ) = e−(t−τ)2 , τ = 1.0.

3.1 Divergence and Gradient Compatibility
To discretize the advection-diffusion equation (3.1) with the control volume method we
integrate the equation over a small volume 	 . The divergence theorem is applied to the
Laplacian diffusion term in a straightforward manner, but we are left with the trouble-
some advection term. One way of treating this term is to use the calculus identity from
the product rule,

∇·(φv) = v ·∇φ+φ∇·v. (3.2)

Integrating over the control volume,∫
	

v ·∇φ=
∫
	
∇·(φv)−
∫
	
φ∇·v. (3.3)

Applying the divergence theorem to the first term on the right, and approximating the φ
as a constant, φ̄, on the control volume gives an approximation for the advection term as∫

	
v ·∇φ≈
∫
∂ 	
φv ·nda− φ̄
∫
∂ 	

v ·nda. (3.4)

The location of velocities on the control volume faces and φ at cell centers makes this a
discretization compatible with a numerical version of the product rule. In particular, if
the velocity field is divergence free, ∇·v = 0, then the numerical approximation will be
compatible with conservation of φ in the numerics.

21



3.2. A Word of Warning 22

3.2 A Word of Warning
The leapfrog explicit scheme can be used for the advection terms, but care must be taken
with the diffusion terms to avoid the Richardson’s method when v = 0. If you choose
an explicit method, then evaluating the diffusion term at t n−1 will result in the Dufort–
Frankel scheme. If an implicit method is chosen, then a linear algebra (Ax = b ) solver is
required.

Approximate the source as deposited in a single control volume. Note that the total
amount deposited should not be grid dependent; it should be equal no matter how small
the control volumes are. That is,

∫ 10
0

∫ 2π
0

∫ 2π
0 f (x, y, t )d xd yd t = C is problem depen-

dent.
A numerical solution based on MATLAB code is shown in Figure 3.1.

Figure 3.1. Solution of the advection-diffusion problem on a 20×20 periodic control volume
grid at time t = 10 days. Diffusion dominates advection with α = 1.0 and the point source is seen to
have spread out while shifting its center only a small amount.

3.3 Objects Revisited
The advection-diffusion equation is representative of the kind of equations that must be
solved numerically to simulate climate and weather. There is an advection term, v · ∇u,
and a diffusion term, ∇2u, as well as the time dependant term, ∂ u

∂ t . The first two are
spatial terms, while the last is only in the time dimension. What does this mean in terms
of the abstractions and organization of a program to solve the equation?

Underlying the spatial terms is a discretization on a grid. So we might propose that the
grid is an object with methods from its class defined to compute the discretization. The
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time dimension is usually not considered part of the grid,8 and we have already introduced
methods for integrating and discretizing the time derivative. So let’s focus on a grid object
for the control volume method; call it cvgrid2d.

Formulating a class abstraction requires that you identify the fundamental concepts
belonging to the idea. In the case of grids, there are sets of points, with coordinates and a
special number, or numbers, specifying the resolution of the grid. For ease, let’s consider
the data structure of the grid to be an N ×M array of coordinates. But what does each
coordinate represent? For the control volume method, each point (xi , yj ) of the grid
represents the center of a control volume.

But that is not all. The edges of the control volume must be specified somehow. We
might do this by introducing another array of half or edge values. But we could just as
well make the assumption and agree on the convention that the edges lie halfway between
the centers. Some things we want to do will also require that we extend the grid to include
boundary values. But there is no reason that the outside world needs to know about this.
We could compute the extension internally and keep it as a private part of the object.
There are always multiple ways to form the abstractions, and it can be confusing if the
assumptions are not clearly stated or clearly part of the programming team’s folklore. So
let’s agree for the purposes of this exercise to keep it simple and only implement uniform
grids in each direction, with cell boundaries at the half points. The essentials in this case
are, on input, the numbers N and M and the bounds of the region [xl e f t , xr i g h t ] and
[yb ot t om , yt o p]. The rest can be figured out internally.

The code in Figures 3.2 and 3.3 illustrates an implementation in MATLAB of a two-
dimensional control volume grid object. We divide the constructor code for the object
into two cases; first Figure 3.2, when no arguments are used, and second Figure 3.3, when
properties are set.

When the grid object constructor is called with seven arguements, it has all the infor-
mation requried to set the internal properties of the grid. A fragment of the code to set
up the control volume centers and edges is shown in Figure 3.3.

The data storage associated with the object is really a structure. It holds the particulars
associated with a given instantiation (realization) of the class. This storage is set aside in
the similarly named routine of the class, called the constructor. What goes with the object
and its storage are the methods that work with this data. In the case of a grid, we need an
operator library—calculations such as∇2u and v·∇u. If you think about it, these discrete
numerical operators are implemented differently for every grid type, so they belong to
the grid object and need to use its private data. In Figure 3.4, the Laplacian is computed
for a field F defined on a control volume grid.

With these objects and classes as building blocks, you can build a code to solve the
advection-diffusion equation without getting lost in subscripts and implementation de-
tails. For example, see Figure 3.5. The class may need to be extended to do what you
want, but then others can easily use your code. Whenever possible, data should be hid-
den to simplify the user interface. For example, in the cvgrid2d example, your colleague
need never know that to compute a Laplacian or perform interpolation on the grid re-
quires that a halo region, a grid extension, must be filled. On the other hand, this makes
it hard to change the type of boundary conditions on the region. Can you think of ways
to generalize the specification of the boundary conditions without complicating the user
interface?

8The semi-Lagrangian transport method is an exception where the advection term and time derivative are
considered together.
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function G = cvgrid2d(varargin)
% cvgrid2d creates an extended, 2d, control volume grid
% Usage: Adv = cvgrid2d(N,M,xleft,xright,ybot,ytop)
% Once the extended grid is established, with index mappings for
% halo updates, then interpolation is supported as a method
% along with discrete operators Laplacian and gradient.
% Input: nx - number of control volume cells in the x-direction
% ny - number of control volume cells in the y-direction
% xleft, xright - edges of region in x
% ybot, ytop - edges of region in y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The grid data structure contains
% nx, ny the number cell centers of internal cells
% xc,yc - cell centers of the uniform grid nx x ny
% oriented left to right, bottom to top.
% The edge grid for velocity and advection contains
% nxe, nye - cells in each direction
% xe,ye - the cell edge coordinates
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch nargin
case 0
% no input arguments so create a default component
G.xc = [];
G.yc = [];
G.xe = [];
G.ye = [];
G.nxe = 0;
G.nye = 0;
G.nx = 0;
G.ny = 0;
G.nxpt = 0;
G.nypt = 0;
G.bctype =’none’;
G = class(G,’cvgrid2d’);
case 1
% one input argument so check if it is a component already
if (isa(varargin{1},’cvgrid2d’))

G= varargin{1};
end

Figure 3.2. A two-dimensional control volume grid constructor when not much information
is supplied. The internal pointers to storage for the object are set up but not allocated. This is standard
procedure for class definitions.
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case 7
nx = varargin{1};
ny = varargin{2};
xleft = varargin{3};
xright = varargin{4};
ybot = varargin{5};
ytop = varargin{6};
bctype = varargin{7};
%for control volume grid, centers and edges
xc = zeros(nx,1);
xe = zeros(nx+1,1);
yc = zeros(ny,1);
ye = zeros(ny+1,1);
%Fill the coordinate arrays
nxpt = 1;
dx = (xright - xleft)/nx;
dy = (ytop - ybot)/ny;
xe(1) = xleft;
for i = 2:(nx+1)
xe(i) = xe(i-1) + dx;

end
ye(1) = ybot;
for j = 2:(ny+1)
ye(j) = ye(j-1) + dx;

end
% Put the cell centers at cv centroid, halfway between edges
for i = 1:nx
xc(i) = 0.5* ( xe(i) + xe(i+1) );
end
for j = 1:ny
yc(j) = 0.5* ( ye(j) + ye(j+1) );
end
G.xc = xc;
G.yc = yc;
G.xe = xe;
G.ye = ye;
G.nxe = length(G.xe);
G.nye = length(G.ye);
G.nx = length(xc);
G.ny = length(yc);
G.nxpt = nxpt;
G.bctype = bctype;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% end cvgrid2d fill
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
G = class(G,’cvgrid2d’);
otherwise
error(’Wrong number input arguments: cvgrid2d class constructor’)
end

Figure 3.3. A two-dimensional control volume grid constructor building the edge and center
coordinates. With this information the grid object G is ready to use. The methods of the class have access
to G and items can be retrieved using the get method.
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function LaplF = cvLapl(G,F)
% Calculate the Laplacian of F at the cv centers.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Input
% A is the extended control volume (cvgrid) on which fields are
% defined, in particular [A.X,A.Y] and [A.Xe A.Ye] are the
% meshgrid produced cell center points and extended cell edge
% coordinate arrays.
% F is nxm field of values.
% Output:
% LaplF is the resulting Laplacian at cell center points
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nx = G.nx;
ny = G.ny;
nxpt = G.nxpt;
nypt = G.nxpt;
xe = G.xe;
ye = G.ye;
% Extend the grid using the private method cvextend
[Xex,Yex,Fex]= cvextend(G,F);
for j = (1+nypt):(ny+nypt)
for i = (1+nxpt):(nx+nxpt)
ic = i-nxpt; % Center point indices
jc = j-nypt;
aj = ye(jc+1) - ye(jc); % Cell face areas, da
ai = xe(ic+1) - xe(ic);
LaplF(ic,jc) = ...

(Fex(i+1,j) -Fex(i,j))/(Xex(i+1) -Xex(i)) * aj ...
- (Fex(i,j) -Fex(i-1,j))/(Xex(i) -Xex(i-1)) * aj ...
+ (Fex(i,j+1) -Fex(i,j))/(Yex(j+1) -Yex(j)) * ai ...
- (Fex(i,j) -Fex(i,j-1))/(Yex(j) -Yex(j-1)) * ai ;

end
end

Figure 3.4. Control volume discretization of the Laplacian assuming quantities at cell centers
on an extended grid with halo regions setting the boundary conditions.
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function ADeq
%
% Advection-diffusion program for the cvgrid2d class.
% Field values are at the cell center points
% Velocities are at cell edges
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
%Uniform grid initialization
nx = 20;
ny = 20;
xleft = 0.0; xright = 2.0*pi;
ybot = 0.0; ytop = 2.0*pi;
bctype = ’periodic’;
%bctype = ’zero’;
% Set the control volume grid
G = cvgrid2d(nx,ny,xleft,xright,ybot,ytop,bctype);
% Define timestepping and initial conditions
tstart = 0.0;
tend = 10.0;
dt = 0.1; % time step (also in days)
[U,V,F] = init_case(G);
xe = get(G,’xe’);
ye = get(G,’ye’);
dx = xe(2)-xe(1);
dy = ye(2)-ye(1);
vol = dx*dy;
[X,Y]= meshgrid(xe,ye);
quiver(X,Y,U,V)
pause
xc = get(G,’xc’);
yc = get(G,’yc’);
surf(xc,yc,F);
pause
% Solve the advection-diffusion equation
alpha = 1.e0 % diffusion coeffecient
time = tstart;
surf(F)
while (time<tend)
Fadv = cvAdvect(G,U,V,F);
Flapl = cvLapl(G,F);
S = source(F,time,vol);
Fnew = F + dt*(alpha*Flapl -Fadv) + dt*S; % explicit Euler
time = time + dt
surf(xc,yc,Fnew)
pause
F = Fnew;
end

Figure 3.5. After initializing the control volume grid G, initial conditions must be set for
velocity U ,V , and F . A time stepping loop advances the solution using an explicit Euler method with
a timestep of d t = 0.1. The solution surface is plotted at every timestep.



Chapter 4

Barotropic Modes of the
Atmosphere

The shallow water equations on the sphere in advective form can be written

d q
d t
= 0, (4.1)

d h
d t
=−δh, (4.2)

v= k×∇ψ+∇χ , (4.3)
ξ =∇2ψ, (4.4)
δ =∇2χ . (4.5)

The BV.m code solves the barotropic vorticity equation using the semi-Lagrangian trans-
port method for updating the vorticity assuming that δ = 0. The spectral method is
used to solve for the stream function and to compute the velocity from the stream func-
tion. Since h does not change when δ = 0, the definition of potential vorticity is simply
q = ξ+ f , where f = 2Ω sinφ is the Coriolis term. Whenδ is not zero then h is changing,
and we must use the definition of potential vorticity as q = (ξ+ f )

h . The set of equations
above then models the shallow water solution.

What is interesting is how the barotropic structures of the atmosphere are affected by
the divergence. To explore this we will take a typical barotropic solution, a Rossby wave,
and perturb it by introducing a divergence.

The specified divergence is in lieu of another prognostic equation that would predict
the δ and χ and form a complete nonlinear shallow water system. The δ will act as
a perturbation, forcing the system much like the thermal heating of the earth’s surface
or the effect of surface topography on the momentum. In fact, the δ time variation is
proportional to the∇2hs , where hs is the surface height.

The surface perturbation that we will use is from the mountain test case, case 5. The
initial conditions will be case 6, i.e., a “stable” mode with Rossby wave number four. We
will assume that all the other terms of the δ prognostic equation are in equilibrium and
that the tendency ∂ δ

∂ t is only from the topography. Since this change to the stable flow
puts the system out of geostrophic equilibrium, we will study the response as the system
adjusts. We will simulate that adjustment by forcing the δ tendency to zero through time
using a multiplier as

δ = δ0e−
t
τ , (4.6)

where δ0 is the initial delta tendency and τ = 1 day is a relaxation time constant.
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Figure 4.1. Potential vorticity solution of the barotropic equation using BV.m. A stable wave
five propagates zonally.

The project involves four tasks:

1. Simulate stable Rossby waves with BV.m.

2. Add the h equation in advective form to BV.m.

3. Perturb the h equation’s right-hand side with a specified δ.

4. Simulate 1, 5, 10, and 15 days from Rossby wave initial conditions, and examine the
behavior of the solutions compared to the stable Rossby waves.

4.1 Algorithm for Modified BV
The spectral method will be used to solve diagnostic relations, and the semi-Lagrangian
transport will be used to update the prognostic equations.

Algorithm.

• Begin: Initialize the h, q fields as slt_fields. Initialize ξ ,ψ,δ,χ , hs as spectral_fields.

• Run a time step loop 1: nsteps.

1. adjust δ tendency for the h right-hand side

2. use SLT to find particle paths and departure points

3. interpolate RHS to mid points

4. use SLT to advance time levels of q and h
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5. find ξ = q h − f

6. solve using spectral for ψ and χ from ξ and δ

7. compute U = u cosφ and V = v cosφ

8. update time and iterate loop

• Finalize the output plots

4.2 The Spectral and Semi-Lagrangian Classes Used in BV.m
The abstraction of the spectral_field class specifies a variable to be a spectral field, i.e., one
that has values on a Gaussian grid and also in terms of spectral coefficients. In other words,
a field that is amenable to spectral analysis and synthesis. Before the field can be defined a
gauss_grid of a given resolution must be defined. The syntax for the instantiation of these
two objects is

G = gauss_grid(’T10’,nj);
PSI= spectral_field(’Streamfunction’,G);

where n j is the number of latitude lines used in the Gaussian grid. The methods of this
class perform various computations with the spectral representation of the field. In partic-
ular, analysis, synthesis, divergence, curl, and Laplacian operators can be evaluated. The
Helmholtz and Laplace equation can also be solved calling methods of this class. Besides
the description of the spectral method in the text [6], the MATLAB codes are described
in [8]. As per MATLAB convention, the code for this class lives in a folder called @spec-
tral_field inside the my_classes folder on the MATLAB path.9

The other user defined class in the program BV.m is the slt_grid class. Functions of the
spectral field class can be transferred to the slt_grid which extends their periodic values at
longitude zero and 2π as well as extensions for interpolation at the poles. Semi-Lagrangian
interpolation as well as particle tracking are methods of this class. These methods are
used to find SLT departure points and interpolate the advected vorticity in BV.m with the
syntax

A = slt_grid(xg,yg);
[XD,YD,XM,YM] = slt_particle(A,Uhalf,Vhalf,dt);
EtaD = slt_interp(A,Etan,XD,YD);

The transfer of data into and out of these objects is accomplished using the get and
put methods of each of the classes. This programming requirement of MATLAB objects
makes the code a little bit of a cludge; a more complete implementation of the user defined
data types might provide for type conversion and operator overloading, but for now these
gets and puts can be thought of as simple copies to the appropriate data structures. Thus
to retrieve the gridpoint values of a spectral field the syntax is

Un = get(U,’gp’);

4.3 Analysis of the Solution Using SWAN
A Shallow Water Analysis (SWAN.m) program that computes the characteristics of the
solution including the power spectra is illustrated in Figure 4.3. This is part of a MATLAB
code that organizes the simulation into phases similar to the component models and stages

9MATLAB code for BV.m and the classes described is available online.
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of the Earth System Modeling Framework (ESMF). A model object is specified, and begin,
run, and finalize methods are called. The main program is shown in Figure 4.2. The
SWAN computation and display is part of the SWE_Analyze method.

% Set up the model buffer
model.name = ’SWE spectral, semi-implicit’;
model.hgrid = []; % horizontal grid
model.fields = []; % fields, u,v,phi, etc
model.control = []; % control parameters
model.constants = []; % physical constants, etc...
%
model = SWE_Begin(model);
model = SWE_Run(model);
model = SWE_Finalize(model);
model = SWE_Analyze(model);
clear all;

Figure 4.2. Main calling program for a shallow water equation simulation with an Analyze phase.
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Figure 4.3. Shallow Water Analysis (SWAN) dashboard. Along with plots of the solution
fields, analysis of the kinetic energy spectrum and the divergence spectrum are included.



Chapter 5

Vertical Structure of the
Atmosphere

5.1 Vertical Structure Equation
The vertical structure equation (VSE) is [4]

(p2 up)p + q u = 0, (5.1)

where the vertical coordinate for the atmosphere is pressure and q = RT
g h are constants

of an isothermal atmosphere. The boundary conditions are up +
κ
p u = 0 at p = 0, ps .

The choice of the upper boundary at zero pressure effectively places the top of the atmo-
sphere at an infinite height resulting in a singular Sturm–Liouville problem [7]. This is
the problem that Charney coped with poorly, but in this exercise we may fair no better.

Here we use a compact method applied to the VSE, and the eigenvalues (modes) are
computed. It is interesting that these modes also appear in a normal mode expansion of the
hydrostatic (or nonhydrostatic [18]) equations of motion from a separation of variables.
The VSE modes are indicative of the way the atmosphere responds dynamically in the
vertical. Any discretization of the vertical can be viewed as giving an approximation of
the VSE modes; see Figure 5.1. Depending on how that discretization is developed, it
may or may not be true to the vertical operator. This has implications for the type of
discretizations that are acceptable, adequate resolution, and correct boundary conditions
that should be applied in the vertical.

5.2 A Lorentz Vertical Grid Class
Any discretization in the vertical must specify an underlying grid and location of the es-
sential atmospheric state variables. So before introducing the discretization of the VSE,
(5.1), we will introduce a user defined type for one particular choice of the vertical grid
and atmospheric column representation. These are the lvgrid and lvcolum types. One of
the functions of this class computes the standard atmosphere, for example, given values
of pressure. The top of the model must be specified for the class, a value that essentially
regularizes the singular Sturm–Liouville problem. The grid choice is the same as the Com-
munity Climate System Model CCSM4 and is referred to as a Lorentz grid.

The purpose of the Lorentz vertical grid class is to set up storage and initialize variables
associated with the vertical. For example, the number of layers k as well as the full zk and
half layer zk+1/2 coordinate values ranging between one and zero. At half values are the
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Figure 5.1. The modes of the VSE as computed with a compact method. The oscillatory
behavior of higher modes is evident as the upper ( p = 0) boundary is approached.

continuity and vertical momentum variables z, ż and π, lnπ, and ln p. At integer values
are the horizontal momentum and thermodynamic variables U , V , T , q , and p. The
methods of the class compute various terms, such as fluxes, derivatives, and integrals on
the grid. To instantiate a Lorentz grid the initialization program can be constructed as
illustrated in Figure 5.2.

%
% First set up a lvgrid and lvcolumn
%
g = lvgrid(96); % resolution of the column specified here
KK = get(g,’KK’);
zk = get(g,’zk’);
zh = get(g,’zh’);
c = lvcolumn(’vertical’,g);
%
% Other initializations ....
[Z,H]= vse(c) % solve the vertical structure equation

Figure 5.2. Set-up for a vertical column of the atmosphere using the Lorentz grid and column
class. The object g and c are the structures holding all the dynamic and thermodynamic variables. After
setting pressures for the grid points, the discretization of vertical structure equation can be numerically
solved.
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5.3 A Compact Discretization
Another interesting discretization that yields spectral convergence is a compact method
based on the Laguerre polynomials [14]. The approximation is based on discrete points
of a grid {xj }, and there are only a finite number of them since we cannot keep running
out to infinity on a computer. A compact method for the derivative [15] means an ap-
proximation of the form

M∑
j=L

Ai j ux (xj ) =
K∑

j=J

Bi j u(xj ). (5.2)

The matrix A and B will be determined to get an accurate approximation about the point
xi . In terms of a stencil, the formula will use several implicit derivative points and several
function value points. These do not need to be on the same grid; for example, staggered
grids can be used. The compact procedure works for more than a derivative. We could
use it for interpolation, quadrature, or, actually, any linear operator. To make this gen-
eralization, write the unknown point values as d and the known point values as p. The
compact approximation seeks matrices A and B such that Ad−Bp= 0,

(D,P)
�

A
B

�
= 0, (5.3)

where D and P are Vandermonde matrices for d and p.
I’d like to propose that we choose the method to be exact on the first few Laguerre

polynomials. That is, we will have an exact approximation for the unknown for functions
in a subspace of the larger space when evaluated at the grid points. The equation for the
method coefficients evaluating a derivative (d= ux , p= u) is
⎛
⎝ 1 ... 1 0 ... 0

L′0(xL) ... L′0(xM ) −L0(xJ ) ... −L0(xK )
L′n(xL) ... L′n(xM ) −Ln(xJ ) ... −Ln(xK )

⎞
⎠� AT

i
BT

i


=

⎛
⎝ 1

0
0

⎞
⎠ . (5.4)

Suppose we let d = L(u) where L represents the self-adjoint linear operator of the
VSE, (5.1). Then the equation for the method coefficients is
⎛
⎝ 1 ... 1 0 ... 0
λ0L0(xL) ... λ0L0(xM ) −L0(xJ ) ... −L0(xK )
λn Ln(xL) ... λn Ln(xM ) −Ln(xJ ) ... −Ln(xK )

⎞
⎠� AT

i
BT

i


=

⎛
⎝ 1

0
0

⎞
⎠ . (5.5)

To solve the equation Lu = f using the compact method, note that A−1Bu = f on a
pointwise basis, so that u = B−1A f . There is some assembly required to deal with the
implicit points solving on the whole grid.

The VSE code implementing the compact method and solving the Sturm–Liouville
problem is shown in Figures 5.3 and 5.4.
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function [Z,H] = vse(c);
%usage [Z,H] =vse(c);
% Solve the vertical structure equation for the column c
% Note: this is an eigenvalue/eignfunction problem for H and Z.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Inputs:
% c - initialized Lorentz vertical column.
% This will include values for
% Ts, \theta, T, and p at the grid layers and surfaces
% of the LV grid.
% From these \gamma can be comuputed for each layer.
% \gamma is the static stability parameter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Outputs:
% Z - matrix of eignfunction columns
% H - vector of eigenvalues (dimension is KK)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First get the LVgrid values associated with the column
g = get(c,’LV’);
KK = get(g,’KK’);
zk = get(g,’zk’);
zh = get(g,’zh’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize half and integer values
gammak = zeros(size(zk));
gammah = zeros(size(zh));
Dpk = zeros(size(zk));
Pk = zeros(size(zk));
Dph = zeros(size(zh));
% Extract some fields and thermodynamics constants from the column
P = get(c,’P’);
T = get(c,’T’);
theta = get(c,’theta’);
Rgas = get(c,’Rgas’);
Ts = get(c,’Ts’);
gravty = 9.806; % m/s^2
% Set up other variables
for k = 1:KK
Pk(k) = 0.5*(P(k)+P(k+1)); % Pressure at the integer levels
Dpk(k) = P(k+1)-P(k) ; % \Delta p_k
end
% Compute static stability parameter, gamma, on the zh grid
for k = 1:KK-1
gammah(k) = - (T(k)+T(k+1))/(theta(k)+theta(k+1)) * ...

( theta(k+1) - theta(k))/(Pk(k+1)-Pk(k));
end
gammah(KK) = -T(KK)/theta(KK) * ...

( theta(KK)-theta(KK-1))/(Pk(KK)-Pk(KK-1));
gammah(KK+1) = gammak(KK);
for k = 1:KK-1
Dph(k+1) = Pk(k+1)-Pk(k); % \Delta p_{k+1/2)
end
Dph(1) = Dpk(1);
Dph(KK+1) = Dpk(KK);
% fix the bottom and top

Figure 5.3. Initialization and set-up for the VSE solution.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set up system matrix: AZ = lambda Z, where lambda = - 1/(gH)
% The discretization is based on control volumes
% centered in the integer levels of a Lorentz vertical grid.
% Half index values are obtained by averaging and boundary values
% are extrapolated (linearly) from interior points, eg.
% Zs = Z_KK + (Ps - P_KK)/(P_KK - P_KK-1) * (Z_KK - Z_KK-1 ).
A = zeros(KK);
for k = 2:KK-1
A(k,k-1) = P(k)/(Rgas*gammah(k)*Dph(k)*Dpk(k));
A(k,k) = - P(k+1)/(Rgas*gammah(k+1)*Dph(k+1)*Dpk(k)) ...

- P(k)/(Rgas*gammah(k)*Dph(k)*Dpk(k));
A(k,k+1) = P(k+1)/(Rgas*gammah(k+1)*Dph(k+1)*Dpk(k));

end
% Assign first, last equation coefficients for boundary conditions

A(1,1) = - P(2)/(Rgas*gammah(2)*Dph(2)*Dpk(1));
A(1,2) = P(2)/(Rgas*gammah(2)*Dph(2)*Dpk(1));
A(KK,KK) = -P(KK)/(Rgas*gammah(KK)*Dph(KK))*Dpk(KK) ...

-P(KK+1)/(Rgas*Ts*Dpk(KK)) ...

*(1.0 + (P(KK+1)-Pk(KK))/Dph(KK));
A(KK,KK-1) = P(KK)/(Rgas*gammah(KK)*Dph(KK))*Dpk(KK) ...

+ P(KK+1)/(Rgas*Ts*Dpk(KK)) ...

*((P(KK+1)-Pk(KK))/Dph(KK));
%
% Solve the eigenvalue problem using MATLAB dense
% matrix routine, eig
%
[Z0,Lambda] = eig(A);
Z = zeros(size(Z0));
H = zeros(size(zk));
for k = 1:KK

H(k) = -1.0/(gravty*Lambda(k,k));
end
% Sort, reorder and Pack the height eigenvalues
% so that returned Z has eignvectors in descending order
[H0,indx] = sort(H);
% Convert to (m) and scaling so first mode = 10km
unitsconversion = H0(KK-1)/10.e3;
for k = 1:KK

Z(:,KK-k+1) = Z0(:,indx(k));
H(KK-k+1) = H0(k)/unitsconversion;

end

Figure 5.4. Define the discretized problem and solve for the eigenvalues using MATLAB.
Return the modes, Z, and normalized eigenvalues H .



Chapter 6

Rosenbrock Stiff ODE
Methods for Chemical
Reactions

The equation for chemical species conservation and reaction in the atmosphere takes the
form

Dc
D t
= R(t , c). (6.1)

The variable c expresses a concentration or mixing ratio. The material derivative ex-
presses that the chemical reaction occurs in a parcel of air moving with the flow and that
if no reaction occurred, the chemical species would simply be advected with no change
of concentrations. Within this air parcel, a chemical reaction takes place that can be
modeled with ordinary differential equations (ODEs). Choosing an individual parcel,
let y(t ) =
∫

A(t ) c da, and write the ODE system as

y ′ = F (t , y) with initial conditions y(0) = y0. (6.2)

This is the common notation for writing an ODE, and we will use it in this section to
avoid confusion and simplify notation for the numerical methods. The exercise will be to
code the methods and perform some analysis of the stability and asymptotic properties
of a simple chemical reaction test case.

6.1 The Runge–Kutta–Rosenbrock Method
Runge–Kutta methods fall into two categories—explicit and implicit. Chemical reactions
are almost always stiff in the sense that they involve multiple and disparate time-scales.
The use of an explicit method for this type of system would require restricting the time-
step to the length of the smallest time-scale, a prospect that is not appealing for the long
time integrations of climate problems. The Rosenbrock methods are an instance of the
Runge–Kutta implicit methods.

Runge–Kutta methods can all be expressed using a method tableau (also called the
Butcher tableau)

c A
bT

where b is the quadrature weights and c indicates intermediate positions within the time
step. The matrix A is of size s × s , where s is the number of stages in the Runge–Kutta
method. A step of the method can be described from the tableau through the following
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equations to advance from an initial condition at time t0, to the time t1 and time-step size
h = t1− t0.

y1 = y0+ hbT k, (6.3)
ki = F (t0+ hci , y0+ hAk). (6.4)

The stability function for the Runge–Kutta method (with z = hα analyzing y ′ = αy) is

R(z) = 1+ zbT (I − zA)−1. (6.5)

The two stage, second order Rosenbrock scheme (ROS2) for an autonomous system10

can be written [24] �
I − hγF ′(y0)
�

k1 = F (y0), (6.6)�
I − hγF ′(y0)
�

k2 = F (y0+ hk1)− 2k1, (6.7)

y1 = yo +
3
2

hk1+
1
2

hk2, (6.8)

where γ = 1+ 1�
2

is chosen so that the method is L-stable. The stability function with
z = hα for the problem y ′ = αy is

R(z) =
1+(2− 2γ )z +( 12 − 2γ + γ 2)z2

(1− γ z)2
. (6.9)

Exercise 6.1.1. Using the ROS2 method, solve the test problem

y ′ =
�

0 1
−1 0

�
y. (6.10)

With initial conditions y1(0) = 0 and y2(0) = 1.0, the solution is y1(t ) = sin t and y2(t ) =
cos t . Integrate to t = 20 with Δt = 0.4,0.2,0.1, and 0.05 to consider the accuracy of the
method. (Figure 6.1 plots y1 versus y2 for each of these values.) Plot the stability region of the
complex plane for which |R(z)| ≤ 1. Relate this to A-stability and L-stability.

Butcher [2] derives the condition for a Runge–Kutta method to be symplectic: M =
diag(b)A+AT diag(b)−bbT = 0. Is ROS2 symplectic?

6.2 Chemical Reaction Problem
The appearance of the Jacobian of F in the implicit system shows the major drawback
for implicit systems: how do we calculate or approximate them? And then the ques-
tion becomes how we can most efficiently and accurately solve the implicit system. The
Rosenbrock scheme has the advantage of requiring only one system to be formed at each
timestep, though it will be solved twice for different k’s. We also note that k1 is a first
order approximation to the solution and can be used to estimate the error over the step
as ε= y1− k1.

An example of an atmospheric reaction is the photochemistry of chlorine in the strato-
sphere. Photolysis breaks apart C l2 molecules high in the atmosphere and is a relatively

10In an autonomous system the right-hand side function depends only on the solution, i.e., y ′ = f (y).
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Figure 6.1. Rosenbrock method ROS2 integrating a test problem with progressively finer step
size,Δt = 0.4,0.2,0.1, and 0.05. The exact solution should track the unit circle.

slow reaction, but then these individual atoms recombine very quickly. To see how the
Rosenbrock method applies, consider the toy chemical reaction with a fast, a very fast,
and a slow process involving three constituents, A,B , and C . (This example was given by
Willoughby in 1974 [10].)

The reactions are diagrammed by the mechanism

A→ B (slow), (6.11)
B +B→ B +C (very fast), (6.12)
B +C → A+C (fast). (6.13)

The nonlinear, stiff ODE system is defined by

y ′1 =−0.04y1+ 104y2y3, (6.14)
y ′2 = 0.04y1− 104y2y3− (3× 107)y2

2 , (6.15)
y ′3 =+(3× 107)y2

2 . (6.16)

The initial conditions at t = 0 are y1 = 1, y2 = y3 = 0.

Exercise 6.2.1. Use MATLAB’s ROS2 integrator to solve this system and examine the con-
servation properties and accuracy.

6.3 Strang Splitting in ROS2
An ODE scheme can be applied in more complex situations where the right-hand side
source term can be split into different processes. It is often advantageous (if not accurate)
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to treat each process separately. For example, atmospheric chemistry must model trans-
port, reaction, and diffusion. The ROS2 scheme can be modified to split the source term
as [24]

F (y) = FA(y)+ FD (y)+ FR(y), (6.17)

representing advection, diffusion, and reaction, respectively. The Strang splitting divides
the step into three substeps, and updates of the transport, FT = FA+ FD , are treated with
the explicit trapezoidal rule while the reaction term is treated with ROS2. The scheme is
given by �

I − hγF ′R(Y1)
�

k1 = FR(Y1), (6.18)�
I − hγF ′R(Y1)
�

k2 = FR(Y1+ hk1)− 2k1, (6.19)
(6.20)

together with the other substeps

Y0 = y0, (6.21)

Y1 = Y0+
1
4

hFT (Y0)+
1
4

hFT

�
Y0+

1
2

hFT (Y0)
�

, (6.22)

Y2 = Y1+
3
2

hk1+
1
2

hk2, (6.23)

Y3 = Y2+
1
4

hFT (Y2)+
1
4

hFT

�
Y2+

1
2

hFT (Y2)
�

, (6.24)

y1 = Y3. (6.25)

This splitting is second order accurate in time. Note that the trapezoidal rule is A-stable
but not L-stable. Many of the other source splittings used in climate modeling are only
first order.11

6.4 Transport-Reaction Problem
In this section we explore coupling the stratospheric chlorine photochemistry problem
with two dimensional horizontal transport and vertical transport and diffusion. The flow
itself will be prescribed as in [12]. Using a zonal, meridional, and hybrid vertical coordi-
nate η, the velocities are time and space varying according to

u(λ,θ, t ) = κ sin2(λ) sin(2θ)cos
�
π

t
T

�
+ 2π

cos(θ)
T

, (6.26)

v(λ,θ, t ) = κ sin(2λ)cos(θ)cos
�
π

t
T

�
, (6.27)

η̇(λ,θ, t ) =
ω0

p0
cos
�
2π

t
τ

�
sin
�

s(η)
π

2

�
, (6.28)

11The Strang splitting is based on a factorization of the matrix exponential as a solution to the linear, split
problem y ′ = L1y + L2y which has solution y(t ) = e t (L1+L2 ). Strang noticed that e t L1 e t L2 = e t (L1+L2 ) +
1
2 t 2(L1L2 − L2L1) +O(t 3), so the error is second order unless the operators commute, i.e., L1L2 = L2L1.

However, there is another factorization that avoids this problem: e
t
2 L1 e t L2 e

t
2 L1 = e t (L1+L2 ) +O(t 3). See [16]

for more details.
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where τ is four days, the reference pressure p0 = 1000hPa, the maximum pressure velocity

isω0 =
4π×104Pa

τ , and the vertical shape function is given by

s(η) =min

⎡
⎣1,2

√√√√sin
�
η−ηt o p

1−ηt o p
π

�⎤⎦ . (6.29)

Exercise 6.4.1. To advect the 3D chemical species use a semi-Lagrangian horizontal transport
scheme together with a hybrid vertical coordinate based on the vertical module. Use the ROS2
scheme with Strang splitting to update the reaction, vertical transport, and diffusion. Integrate
for T = 14 days using the prescribed velocities and chemical tracer initial conditions. Explore
the diffusion and mixing properties of the scheme using diagnostics from [13].



Chapter 7

Bayesian Uncertainty
Quantification

This chapter is contributed by Evan Kodra and Mellisa Allen,12 who reported on using
Bayesian statistical methods as a particular approach to uncertainty quantification in nu-
merical modeling. The problem was to estimate the uncertainty in the source of a species
subjected to advection and diffusion in a simple one dimensional periodic domain. The
write-up and their contributed MATLAB code implementing the methods and used for
their project are largely unaltered. It is an interesting project with larger implications
that shows how MATLAB programming can be used to approach advanced topics. Some
background on uncertainty quantification is given in Section 5.8 of Climate Modeling for
Scientists and Engineers.

7.1 Characterizing Uncertainty in a Source
We use Bayesian methods to build a distribution characterizing uncertainty in the source
emission. In this study, we have the advantage of knowing the “true” emission, and thus
we can test performance of multiple variations of the Bayesian approach, illustrating var-
ious issues in its effective implementation.

The target distribution will be the last 30 time steps out of 110. That is, we are compar-
ing an “observed” climate of 30 time periods to a “simulated” climate of 30 time periods.
Each of the 30 grids is a 6-by-6 matrix; these are converted to 36-length vectors for a total
of a 1080-length vector, denoted by YT r ue . YT r ue is obtained from running the control
volume model forward with the true source emission.

In each simulation, starting with some initial guess for the emission, Eg , we use the
Metropolis (M) (or Metropolis–Hastings (MH) in one case [11]) algorithm to simulate
the posterior distribution. We use the multivariate normal distribution to characterize
Y, with covariance matrix σ2I, proportional to the following:

P (Y|E)∝ exp
�
− 1

2σ2
(YT r ue −Y(E))T (YT r ue −Y(E))


, (7.1)

where in practice we allow σ2 = 1, assuming that all errors Yi ,T r ue−Yi ,E are independent
and follow a normal distribution with mean 0 and variance 1, as in [9]. We assume a
uniform prior distribution over the real line for E, which is effectively 1 and will not

12The team of Kodra and Allen developed this project as part of an Advanced Methods for Climate Modeling
course offered in the spring semester of 2011 at the University of Tennessee.
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appear in the ratio r. The ratio r (31, 32) is then computed as

r =
exp
�− 1

2σ2 (YT r ue −Y(E∗))T (YT r ue −Y(E∗))
�

exp
�− 1

2σ2 (YT r ue −Y(E s ))T (YT r ue −Y(E s ))
� . (7.2)

The posterior is estimated as follows:

• Eg is chosen as the best guess at the true E . We assume in some cases better prior
knowledge of E than in others to demonstrate the value of informed prior knowl-
edge.

• A proposal distribution for E is chosen: either uniform, normal, or Gamma to-
gether with a spread parameter.

• The M algorithm runs for 10,000 iterations, as described earlier.

• Density plots are constructed, and 95% quantile-based intervals, as well as medians,
are obtained from the 10,000 iterations. We report medians as point estimates of E .

7.2 UQ Results
Table 7.1 summarizes the various settings and outcomes for each simulation. In each sim-
ulation, the true emission is arbitrarily set to 38.71. Although the chosen settings (columns
2–4) may seem a bit arbitrary, they are chosen to illustrate some of the issues related to
Bayesian simulation, in the context of the inverse problem, discussed earlier.

Table 7.1.

Sim Initial
guess

Proposal
dist.

Spread Median 0.025th
percentile

0.975th
percentile

Acceptance
ratio

1 25 uniform (E(s)-2,E(s)+2) 38.72 37.76 39.62 0.3578
2 55 uniform (E(s)-2,E(s)+2) 38.72 37.84 39.63 0.3605
3 25 uniform (E(s)-0.1,E(s)+0.1) 38.59 31.08 39.57 0.9353
4 55 uniform (E(s)-0.1,E(s)+0.1) 38.89 37.97 49.17 0.9293
5 25 normal variance=1 38.70 37.82 39.60 0.4686
6 55 normal variance=1 38.73 37.81 39.63 0.4713
7 25 normal variance=25 38.71 37.79 39.66 0.1126
8 55 normal variance=25 38.70 37.83 39.60 0.1152

Eight simulations, each producing 10,000 values, were run: four using a uniform dis-
tribution for generation of proposal values and four using a normal distribution. The
first simulation shows the results of a uniform distribution for the proposed value with
an initial guess of 25 and a spread of “previous proposed value”±2. The resulting median
simulated value of 38.72 comes very close to the true value of 38.71, while the values in
the confidence range are within 0.1 and 0.4, respectively, of the true value. For the second
simulation, the initial proposed value was slightly farther from the true value at 55, al-
though the spread values remained the same as those in the first simulation. The resulting
median of the simulation matches that of the first simulation, but the values within the
confidence interval are closer to the true value.

Does this result indicate that a simulation using any initial proposed value will con-
verge? In theory, it should; however, a simulation with 100 as the initial proposed value
was attempted. The result shows the solution flat-lining at the value of the initial guess.
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This outcome is due to machine (and/or MATLAB) rounding error. Since the values in
both the numerator and the denominator of r in this case are so small, they are rounded
to zero, creating a value of “infinity” that the program cannot resolve. Therefore, if the
initial proposed value produces this type of result, the initial proposed value should be
adjusted. Practically speaking, if the simulation appears to “flat-line” at any point, then
this may indicate a poor choice of an initial guess value. In some cases, this may serve as
a nice tool for deducing the neighborhood of the true initial condition.

7.3 Discussion of the Approach
In the context of a simple control volume model, we have demonstrated several simple as-
pects of Bayesian statistics and Markov chain Monte Carlo (MCMC) simulation, notably
including the M algorithm and several of its considerations. We have shown that these
methods can indeed quantify uncertainty in an initial condition like that chosen in this
work.

Although all of the simulations attempted produced reasonable outputs, application
of this process is at present limited to single source emission in a relatively simple system.
Estimation of a vector of initial emissions, of continuous emissions, or of multiple initial
condition variables is beyond the scope of this experiment. However, these more complex
issues may be of interest to both a statistician and a climate modeler. Evaluations of such
multivariate parameters will require adjustment to both the formulation of the advection-
diffusion model and to its statistical evaluation.

Beyond simply estimating uncertainty in more complex, multivariate initial condi-
tions, these statistical methods will ideally be employed in some form on a much larger
scale and more complex simulations, such as global or regional climate models. Keys to
such implementations may include model reduction schemes and/or computational par-
allelism of analysis. Parallel computing will undoubtedly be a useful tool, as the M and
MH algorithms are naturally built and would actually benefit from such computing.

In addition, the choice of evaluation statistics (whether the model is replicating ob-
served) may be much more complex in such an experiment. For example, when esti-
mating uncertainty in an initial condition vector of a global climate model, what set of
variables should be compared to observations (as in (7.1) and (7.2))? Furthermore, at what
spatial and temporal resolutions should they be compared? If we arrive at a distribution
of initial conditions using observed versus modeled temperatures in an M algorithm, for
example, how does that ensure that using precipitation instead would not yield a com-
pletely different initial condition distribution? Must we consider, then, joint performance
on both temperature and precipitation? These are some questions, undoubtedly among
many others, that one might encounter when adapting methods proposed here to real-
world climate models.

In this work, we actually used the control volume model to compute a synthetic ob-
served time series of grids. This actually assumes that if we choose the correct initial
condition, we could replicate observations exactly. Of course, in real applications, obser-
vations will not come from such a model, and hence this will not be possible; thus, in
estimating uncertainty in initial conditions, there will be additional uncertainty resulting
from any model failure of parametrizing or discretizing some physical process. Concep-
tually, the Bayesian framework should capture this uncertainty, as it lets the data guide
the construction of the uncertainty in initial conditions.

Further opportunities exist in this statistical process for the optimization and uncer-
tainty quantification of boundary conditions from global models used in downscaling to
regional models. This is something that could initially be explored in a manner similar to
this work.
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