
Preface to the Revised
Edition

For this revised edition, I have corrected many typographical errors and improved a
number of figures (3.2, 3.8, 4.1-3, 4.15, 5.7, 8.3, 8.5, 8.6, 8.7,8.14, 8.19, 9.7). The ex-
position in Section 3.2 has been reordered and made more complete, and I have added
a couple of new of theorems (e.g., Theorem 7.3, Birkhoff Transitivity and Theorem
3.5, Completeness of C 0). Thanks to the sharp eyes and careful thinking of a number
of readers, the statements and/or proofs of a number of other theorems have been im-
proved (e.g., 3.24, 4.6, 4.8, 4.42, 4.23, 4.46, 5.9, 5.10, 5.11, and 7.12). Finally there are
are several new exercises (3.3, 3.5, 4.16 and 7.9).

James Meiss
Boulder, Colorado

September 2016
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Preface

On one level, this text can be viewed as suitable for a traditional course on ordinary dif-
ferential equations (ODEs). Since differential equations are the basis for models of any
physical systems that exhibit smooth change, students in all areas of the mathematical
sciences and engineering require the tools to understand the methods for solving these
equations. It is traditional for this exposure to start during the second year of training
in calculus, where the basic methods of solving one- and two-dimensional (primarily
linear) ODEs are studied. The typical reader of this text will have had such a course, as
well as an introduction to analysis where the theoretical foundations (the ε’s and δ’s)
of calculus are elucidated. The material for this text has been developed over a decade
in a course given to upper-division undergraduates and beginning graduate students
in applied mathematics, engineering, and physics at the University of Colorado. In a
one-semester course, I typically cover most of the material in Chapters 1–6 and add a
selection of sections from later chapters.

There are a number of classic texts for a traditional differential equations course,
for example (Coddington and Levinson 1955; Hirsch and Smale 1974; Hartman 2002).
Such courses usually begin with a study of linear systems; we begin there as well in
Chapter 2. Matrix algebra is fundamental to this treatment, so we give a brief discus-
sion of eigenvector methods and an extensive treatment of the matrix exponential. The
next stage in the traditional course is to provide a foundation for the study of nonlin-
ear differential equations by showing that, under certain conditions, these equations
have solutions (existence) and that there is only one solution that satisfies a given initial
condition (uniqueness). The theoretical underpinning of this result, as well as many
other results in applied mathematics, is the majestic contraction mapping theorem.
Chapter 3 provides a self-contained introduction to the analytic foundations needed
to understand this theorem. Once this tool is concretely understood, students see that
many proofs quickly yield to its power. It is possible to omit §§3.3–3.5, as most of the
material is not heavily used in later chapters, although at least passing acquaintance
with Theorem 3.19 and Lemma 3.28 (Grönwall) is to be encouraged.

However, this text does not aim to cover only the material in such a traditional
ODE course; rather, it aspires to serve as an introduction to the more modern the-
ory of dynamical systems. The emphasis is on obtaining a qualitative understanding
of the properties of differential dynamical systems, namely, those evolution rules that
describe smooth evolution in time.1 The primary concept of this study, the flow, is
introduced in Chapter 4. The qualitative theory is often concerned with questions of
shape and asymptotic behavior that lead us to use topological notions such as conju-
gacy in the classification of dynamics.

1This is not to say that the dynamical systems that we study are always differentiable—vector fields need
not be smooth.
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The classification of dynamical behavior begins with the simplest orbits, equilibria
and periodic orbits. As Henri Poincaré noted in his classic New Methods in Celestial
Mechanics, (1892, Vol. 1, §36),

what renders these periodic solutions so precious to us is that they are, so to
speak, the only breach through which we may attempt to penetrate an area
hitherto deemed inaccessible.

Only in the demonstration that dynamics in the neighborhood of some of these orbits
is conjugate to their linearization is it seen that the predisposition of applied scientists
to concentrate on linear systems has any value whatsoever.

The local classification of equilibria leads to the theory of invariant manifolds in
Chapter 5. The stable and unstable manifolds, proved to exist for a hyperbolic saddle,
give rise to one prominent mechanism for chaos—heteroclinic intersection. The center
manifold theorem is also important preparation for the treatment of bifurcations in
Chapter 8.

As mathematicians, allow yourselves to become entranced by the exceptions to the
validity of linearization, namely, with those orbits that are nonhyperbolic. It is in the
study of these exceptions that we find the most beautiful dynamics—even in the case
of the phase plane, to which we return in Chapter 6. The first three sections of this
chapter are fundamental; §§6.4–6.8 can be omitted in favor of later chapters. As we
see in Chapter 8, the exceptional cases form the organizing centers for the behavior
of systems undergoing changing parameters. A qualitative change in behavior under
a small change of parameters is called a bifurcation. A complete exegesis of theory of
bifurcations requires a full text on its own, and there are many excellent texts appro-
priate for a more advanced class (Guckenheimer and Holmes 1983; Golubitsky and
Schaeffer 1985; Kuznetsov 1995). We introduce the reader to the basic ideas of normal
forms and treat codimension-one and -two bifurcations.

Perhaps the most exciting recent developments in dynamical systems are those that
show that even simple systems can behave in complicated ways, namely, the phenom-
ena of chaos. In Chapter 7, we introduce the reader to the concepts necessary for un-
derstanding chaos: Lyapunov exponents, transitivity, fractals, etc. We also give an ex-
tensive discussion of Melnikov’s method for the onset of chaos in Chapter 8. A more
advanced treatment of chaotic dynamics requires a discussion of discrete dynamics
(mappings) and can be found in texts such as (Katok and Hasselblatt 1999; Robinson
1999; Wiggins 2003).

The final chapter treats the subject closest to this author’s heart: Hamiltonian dy-
namics. Since the basic models of physics all have a Hamiltonian (or Lagrangian) for-
mulation, it is worthwhile to become familiar with them. While a traditional physics
text treats these on a concrete level, this book provides an introduction to some of
the geometrical aspects of Hamiltonian dynamics, including a discussion of their vari-
ational foundation, spectral properties, the KAM theorem, and transition to chaos.
Again, there are several advanced texts that go much further, for example (Arnold
1978; Lichtenberg and Lieberman 1992; Meyer and Hall 1992).

While the proofs of many of the classical theorems are included, this text is not
just an abstract treatment of ODEs but an attempt to place the theory in the context
of its many applications to physics, biology, chemistry, and engineering. Examples
in such areas as population modeling, fluid convection, electronics, and mechanics are
discussed throughout the text, and especially in Chapter 1. The exercises introduce
the reader to many more. Furthermore, to develop a geometrical understanding of
dynamics, each student must experiment; we provide some examples of simple codes
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written in Maple, Mathematica, and MATLAB in the appendix, and we use the ex-
ercises to encourage the student to explore further. There are several texts that focus
completely on using one or more of tools like these to explore dynamics (Lynch 2001;
Baumann 2004).

I hope that this book conveys a bit of my amazement with the beauty and utility
of this field. Dynamical systems is the perfect combination of analysis, geometry, and
physical intuition. Central questions in dynamics have been formulated for centuries,
and although some have been solved in the past few years, many await solution by the
next generation.

It is far better to foresee even without certainty than not to foresee at all.
(Henri Poincaré, The Foundations of Science)

James Meiss
Boulder, Colorado

March 2007


