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Roughly speaking, to solve an inverse problem is to recover an object (e.g., parameter
or function) from noisy (typically indirect) observations. In most cases such recovery
cannot be done exactly because the mathematical models that link data to the object
are approximations, data are noisy, the number of observations is finite, and obtaining
a solution may require further approximations for efficient numerical computations.
The importance of assessing the reliability of solutions to inverse problems is evident
given such potential sources of errors. This assessment step is part of what is now
called uncertainty quantification (UQ). Uncertainty quantification for inverse prob-
lems and other problems in engineering requires familiarity with some basic methods
from mathematics, probability, and statistics. But what I have observed during years
of collaborations with scientists and applied mathematicians working on inverse prob-
lems is that they often do not feel as comfortable with their knowledge of probability
or statistics as they do with their background in applied mathematics. The converse
is also true: I have encountered statisticians interested in making contributions to in-
verse problems but who have not been exposed to the basic theory of inverse prob-
lems and the questions that arise in their applications. The objective of this book is
therefore to serve as a bridge between the applied mathematics and statistics commu-
nities. I try to take advantage of the reader’s mathematical background to provide a
basic introduction to probability and statistics for UQ mainly in the context of in-
verse problems, a field with many important practical applications. In addition, the
book provides a basic introduction to statistical regularization of inverse problems for
those with a background in statistics. Since the reader is assumed to be comfortable
with mathematical methods at the level of senior undergraduates and beginning grad-
uate students in mathematics, engineering, and physical sciences, much ground can
be covered: from undergraduate statistics and probability to probability distributions
on infinite-dimensional spaces. For statisticians, the book uses classic linear regression
and statistical inference to introduce the framework of ill-posed inverse problems and
explain statistical questions that arise in their applications. A review of the mathemat-
ical analysis tools required for inverse problems is also included in the appendix. Since
the statistical and probability methods covered have applications beyond inverse prob-
lems, the book may also be of interest to people working in data science or in other
applications of UQ.

The selection of topics I cover has been strongly influenced by discussions I have
had over the years with scientists, applied mathematicians, engineers, and students
from a wide variety of fields. In particular, since advances in computational power
have made the use of Bayesian methodology commonplace in many fields of applica-
tion, I believe that the existence of different schools of inference to conduct UQ is a
topic that deserves more attention. For example, I have encountered practitioners who
were either not aware of the existence of non-Bayesian (e.g., frequentist) methods for

Vii



viii

Preface

inverse problems or could not tell (or care about) the difference. And among those
who know about frequentist and Bayesian methods, there are many who are baffled
by common heated discussions among statisticians regarding the merits or demerits
of these two schools of inference. In practical applications we learn that Bayesian and
frequentist methods (as well as likelihood methods) provide valuable tools for UQ
and for statistical analysis in general. I therefore try to cover both frameworks and to
explain their assumptions, corresponding interpretations, and their important com-
plementary roles by means of examples. To keep the mathematics and probability
theory accessible to a wide audience, I consider probability distributions mostly on
finite-dimensional spaces but do provide some background and examples that serve as
introduction to the infinite-dimensional case. However, even within the framework
of finite-dimensional inverse problems, there is no single statistical methodology that
will work in every application: UQ is highly problem dependent. I have chosen a par-
ticular framework that is widely used, has many practical applications, and provides
basic tools for more complex problems.

We are all aware of how difficult it is to put to use new definitions and results as
this requires techniques that are learned with experience. To help with this transition,
each section includes examples with explicit calculations that introduce useful problem
solving techniques relevant to the particular topic. Examples are also used to clarify
theoretical concepts and to illustrate the type of applications for which the methods
could be used. I include over 130 examples but choosing them has not been easy. I
have tried to select simple illustrative examples that can be understood by a diverse
audience. Although it may not be apparent, many of the examples are simplifications
that capture the essence of more complex questions that arise in applications but which
would require much background to explain fully. Some examples are in fact answers
to questions I have received from students and collaborators over the years. Some sec-
tions also include more theoretical but important details to help warn the reader of
subtle statistical /probabilistic issues that arise in applications of UQ and which could
be easily overlooked.

The book is organized as follows. Chapter 1 provides an introduction to inverse
problems and regularization. Chapters 2 and 4 cover probability and statistical meth-
ods whose applications to inverse problems are considered in Chapters 3, 4, and 5.
Chapter 3 includes methods for data analysis, Chapter 4 focuses on Bayesian methods
that are relevant to inverse problems, and Chapter 5 is dedicated to the data analysis of
one particular set of experimental data. One of the goals of Chapter 5 is to illustrate the
nuances that arise when we try to apply theory to the analysis of real data. The book
includes two appendices: In order to make the book as self-contained as possible, and
to establish the general terminology used throughout, Appendix A provides a sum-
mary of results from analysis that are used in different parts of the book. Given the
importance of conditional probability for Bayesian inference, Appendix B provides
a more careful discussion of conditional probability and conditional expectation, in-
cluding the definition of regular conditional probability. Appendix B assumes some
knowledge of measure theoretic probability but is not required for the understanding
of the other chapters. It includes an introduction to an alternative approach to condi-
tional probability based on disintegration which is not commonly taught. I believe this
is a natural approach that may help some readers get a more intuitive understanding
of conditional probability and expectation.

As explained above, the objective of this book is to provide a basic background in
statistics and probability for UQ mainly in the framework of inverse problems. My
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hope is that this book can be used to complement other textbooks that focus on reg-
ularization, mathematical analysis or computational methods for inverse problems.
Readers interested in learning more about regularization or the general theory of in-
verse problems may consult [93, 120, 150, 154], or [8, 126, 256] for more applied or
computational introductions. The book [30] provides an edited collection of research
papers and tutorials for UQ and large-scale inverse problems. For more material on
Bayesian methods for finite-dimensional inverse problems see, for example, [49, 148,
246], and [241] for an introduction to Bayesian methods in the infinite-dimensional
setting. The book should also help the reader learn the basic theory needed to study
Markov chain Monte Carlo (MCMC) methods, which play a key role in Bayesian
statistics but which I do not cover in this book. There are many good references dedi-
cated to the theory or implementations of MCMC methods and Bayesian computation
[42, 49, 113, 209, 234, 245]. The analysis of inverse problems also requires numerical
optimization methods not discussed in this book. The reader may find introductions
to optimization methods that are important for inverse problems in [8, 39, 192, 256].
Readers interested in learning more about general statistical methods, frequentist or
Bayesian, may consult, for example, [22, 52, 55, 104, 163, 164, 224, 226]. The reader
may also find [223] interesting as it provides a historical account of the role statistics
has played in the twentieth century.

I would like to thank Fadil Santosa and the IMA for organizing and funding work-
shops where preliminary versions of this work have been used. I am also thankful to
Roger Ghanem for giving me the opportunity to do the same at USC. I am very grate-
ful to mentors, reviewers, colleagues, students, and friends who have either provided
valuable feedback in the writing of this book, or who have played an important role in
my understanding and appreciation of the subject. In particular, [ am specially thankful
to Oscar Aguilar, Vaughn Ball, Wolfgang Bangerth, Julianne and Tia Chung, Maarten
de Hoop, Colin Fox, Mahadevan Ganesh, Eldad Haber, Alex Kalmikov, Paul Martin,
Youssef Marzouk, Joyce McLaughlin, Bill Navidi, Aaron Porter, Juan Restrepo, John
Scales, George Smoot, Alessio Spantini, and Philip Stark. Finally, I would like to thank
Cheryl for her unfailing support and patience.

An apology regarding notation. Different areas of statistics, probability, mathe-
matics, and physics have different notational conventions. For example, it is common
in statistics to denote random variables with capital letters and their realizations with
lower case (e.g., x is a value the random variable X takes). But in this book we need
letters to denote sets, o-algebras, random sets, scalars, vectors, matrices, random vari-
ables, random elements, functions, operators, measures, inner product spaces, normed
spaces, etc. This makes it very difficult to follow any particular convention consis-
tently. I hope the notation will be clear from the context.



