Index

0/1 linear integer minimization, 100
3-colorability, 245
4ti2, 80, 83

absolute convergence, 107, 130
affine combination, 3
affine hull, 18
affine hyperplane, 4
algebraic closure, 193, 238, 242, 256
algebraic variety, 239
algorithm
ε-approximation, 157
approximation, 157
Barvinok’s, 129, 134, 146
Buchberger’s, 210, 218
Euclidean, 256
geometric Buchberger, 226
Gram–Schmidt orthogonalization, 50
Graver proximity, 100
incremental polynomial time, 141
Lenstra’s, 53, 79, 144
LLL, 50
Nullstellensatz linear algebra, 242
polynomial total time, 141
polynomial-delay, 141
polynomial-space polynomial-delay, 141
Pottier’s, 71
regular triangulation, 121
weak approximation, 158
all-primal Barvinok decomposition, 153
analytic center, 282
analytic function, 137
approximation scheme
weak, 158
approximate continuous convex optimization, 93
approximate continuous convex optimization oracle, 101
approximate shortest vector, 133
approximation algorithm, 157
weak, 158
approximation scheme, 157
arithmetic mean, 163
Artin’s theorem, 269
ascending chain, 215
assignment problem, 287
augmentation algorithms, 93
augmentation step, 92
Graver-best, 66, 97, 99
augmentation vector, 63, 96
auxiliary objective function, 95
barvinok, 135
Barvinok’s algorithm, 129, 134, 146
for integer linear optimization, 142
homogenized, 153
Barvinok’s signed decomposition, 132
all-primal, 153
dual, 152
primal, 152
Barvinok’s theorem, 134, 135
basic feasible solution, 19
basic semialgebraic set, 187, 273
basic solution, 19, 151
basic variables, 19
basis, 19, 168
biorthonormal, 133
Gröbner, 208, 217, 286
integral, 176
Markov, 221, 228
of a lattice, 34
Bernoulli–l’Hôpital rule, 106
binary encoding scheme, 21
binary search, 143
binomial ideal, 218
binomials, 217
biorthonormal basis, 133
Birkhoff polytope, 288
bisection algorithm, 163
bit length, 21
bit-scaling technique, 66, 100
Blichfeldt’s theorem, 41
block-structured integer programs, 77
Boolean operations, 150, 164, 184
Boolean operations lemma, 148
bounded set, 16
branch and bound algorithm, 176
branching on hyperplanes, 54
brick, 81, 90, 92
Brion’s theorem, 108, 118, 120, 124
Buchberger’s algorithm, 210, 218
gometric version, 226
Buchberger’s S-pair criterion, 210
Buchberger’s theorem, 210
building block, 81
Carathéodory’s theorem, 5, 97, 168
Cauchy integral formula, 285
central curve, 282
central path, 281
certificate of infeasibility, 239
chamber, 151
characteristic polynomial, 280
Cholesky factor, 23
circuit, 97
colorable, 238
combinatorial moment matrix, 279
combinatorial parity conditions, 251
combinatorial system of equations, 239
commutative algebra, 92
comparison oracle, 66, 85, 99
comparison point, 181
complementary slackness, 21, 281
completion algorithm, 92, 226
complex analysis, 106, 137
complex integration, 285
complex number, 238
complex plane, 106
compressed lattice polytope, 279
computational complexity, 21, 58
cone, 5, 274
finitely generated, 5, 12, 13
index descent, 133
pointed, 15
pointed rational, 130
polyhedral, 5
recession, 16, 17
simplicial, 120, 130
tangent, 118
unimodular, 112
conformal (orthant-compatible), 97
conic combination, 3
continuous function, 198
continuous Hirsch conjecture, 282
continuous measure, 89
continuous relaxation, 93, 97
covex combination, 3
covex hull, 3
covex position, 120
covex set, 3
covex subdivision, 122
counting, 105
counting oracle, 143
critical path, 224
cut, 237
De Morgan formula, 118
decision making under uncertainty, 89
decomposition
primal Barvinok, 152
signed, 113
decomposition algorithm, 89
decomposition of polyhedra, 117
decomposition tree, 134
decreasing path, 222
degree, 193, 194
Delaunay triangulations, 122
derivative, 198
Descartes’ rule of signs, 199, 213
determinant of a lattice, 40
diameter of a polytope, 282
Dickson’s lemma, 207
dictionary, 227
dictionary order, 203
differential operator, 109, 159
digging algorithm, 143, 146
dimension, 18
directed augmentation, 66, 96
directed graph, 87
directed path, 87
discrete measure, 89
discretization, 165
division algorithm, 194
domain of convergence, 106, 115
dual basis, 133
dual linear programming, 19
duality
strong, 20
weak, 20
duality trick, 152
Index

dynamic programming problem, 86, 99, 285

\(\epsilon\)-approximation algorithm, 157
elementary square matrices, 6
elimination ideal, 212
elimination of variables, 212
elimination theorem, 212
ellipsoid, 22
ellipsoid method, 22, 25
Euclidean algorithm, 256
evaluation oracle, 93
evaluation problem, 160
exact set, 279
explicit enumeration, 147
exponent vector, 203, 257
exponential integrals, 115, 176
exponential sum, 114, 287
extended Euclidean algorithm, 196, 257
extended group relaxation, 286
extended integer program, 220
extreme point, 18

face, 18
factoring, 176
Farkas’ lemma, 9, 21, 219, 229, 239, 272
fast Fourier transform, 285
feasibility oracle, 143
finite field, 238
finitely generated cone, 5, 12, 13
finitely generated ideal, 208
fixed dimension, 134
flatness constant, 151
flatness theorem, 54, 151
formal Laurent series, 129
Fourier–Motzkin elimination, 5, 7
FPTAS (fully polynomial-time approximation scheme), 158
Fredholm’s alternative theorem, 5, 239, 274
fully polynomial-time approximation scheme (FPTAS), 158, 182
for a maximization problem, 158
for maximizing nonnegative polynomials, 159
for a minimization problem, 182, 187
function
analytic, 137
continuous, 198
rational, 105, 106
separable convex, 63, 79, 85, 98
separable convex \(p\)-piecewise affine-linear, 87
fundamental parallelepiped, 39, 109, 130
fundamental theorem of algebra, 169
gaps, 149, 152
Gaussian elimination, 6, 201, 203
gcd (greatest common divisor), 194, 195, 203
general position, 282
generating function, 105, 108, 129, 287
Boolean operation, 147
evaluation, 135
integer projection, 149
intermediate, 176
mixed-integer, 176
output-sensitive enumeration, 141
positively weighted, 136, 147, 149, 165
projection theorem, 149
rational, 132
specialization, 135
substitution, 135
generating set, 221
generic, 122, 219
geometric Buchberger algorithm, 226
direction improvement, 67
direction series, 105, 110, 130
direction of numbers, 29
global criterion, 179, 181, 185
global mixed-integer polynomial optimization, 157
global nonconvex polynomial optimization, 176
Gomory’s group relaxation, 154
Gomory–Chvátal closure, 56
Gordan–Dickson lemma, 43, 44, 90, 207, 227
Gröbner basis, 208, 217, 286
of a lattice ideal, 222
reduced, 212, 218
reduced minimal, 219
Gröbner complexity, 233
Gröbner graph, 248
graded lexicographic order, 204
ggraded reverse lexicographic order, 204
Gram–Brianchon theorem, 118
Gram–Schmidt orthogonalization algorithm, 50
graph, 221, 237, 286
 of a polyhedron, 282
Graver-based dynamic programming, 86
 96, 100
Graver basis, 63, 64, 219, 232
 for stochastic IPs (integer programs), 91
 length bound, 94
Graver-best augmentation step, 66, 97, 99
Graver complexity, 80, 82, 102
 100
Graver proximity algorithm, 100
Graver test set, 63
 greatest common divisor (gcd), 194, 195
 203, 256
 of univariate polynomials, 195
grid approximation, 165
 grid problem, 165, 171
 group relaxation, 285
H-representation, 10
Hadamard product, 147, 184
 half-open decomposition, 124, 152, 153
half-open polyhedron, 124
 half-open simplicial cone, 130
 half-open triangulation, 127
 heights, 121
Hermite normal form (HNF), 35, 95, 231
 element enumeration, 149
 Hilbert’s 10th problem, 58
 Hilbert’s 17th problem, 269
 Hilbert’s basis theorem, 208, 218
 Hilbert’s Nullstellensatz, 213, 237, 239
 256
Hirsch conjecture, 283
HNF (Hermite normal form), 35, 95, 231
Hochbaum–Shanthikumar’s proximity, 97
Hölder’s inequality, 159
 holes, 180
homogeneous polynomial, 243
 homogenization, 14, 130, 269
 homogenized Barvinok algorithm, 153
hyperplane, 4
 hyperplane arrangement, 282
ideal, 183, 201
 finitely generated, 208
 generated by a set, 202
 monomial, 206
radical, 262, 278
 toric, 217, 286
 vanishing, 202
ideal intersection, 213
ideal membership, 202, 212
ideal point, 181
ILF (integer linear feasibility problem), 54
ILP (integer linear optimization problem), 53
inapproximability, 58
inclusion-exclusion principle, 112, 117
 124
incomputable, 58
indecomposable lattice point, 47
independent set, 252
index of a cone, 111, 130
 index of a sublattice, 40
 indicator function, 41, 117, 124
 infeasibility certificate, 239
 infinite geometric series, 106
 initial feasible solution, 220
integer hull, 55, 151
integer linear feasibility problem (ILF), 54
integer linear optimization problem (ILP), 53
integer linear program in fixed dimension, 79
integer programming game, 190
integer projection, 136
integral, 176
 integral basis, 44
 integral generating set, 44
 integral polyhedron, 56
 intermediate generating function, 176
 intersection lemma, 147, 158, 186
 irrational decomposition, 152
 iterated bisection, 143
Kannan’s partitioning theorem, 151
Khinchin’s flatness theorem, 54, 151
knapsack, 285
 knapsack problem, 284
k-SOS ideal, 278
 k-th theta body, 278
 ℓ₁-norm, 83, 93, 96, 99, 101
Laplace transform, 115
large scale problem, 89
largest term, 204
LattE integrale, 135
lattice, 34
 sublattice, 40
lattice basis
 LLL-reduced, 133
lattice-point-free convex bodies, 151
lattice program, 223
lattice width, 54
lattice width direction, 54
Laurent expansion, 106
Laurent polynomial, 130
Laurent series, 106, 284
Lawrence–Khovanskii–Pukhlikov theorem, 131
layers, 81
leading coefficient, 204
leading monomial, 204, 207
leading term, 194, 204
Lenstra’s algorithm, 53, 79, 144
lexicographic order, 141, 181, 203
LF (linear feasibility problem), 22
lift-and-project method, 277
lifted configuration, 121
limit point, 166
lineality space, 15, 17
linear feasibility problem (LF), 22
linear optimization problem (LP), 21
linearization technique, 277
Lipschitz constant, 171
LLL (Lenstra–Lenstra–Lovász) algorithm, 50
LLL-reduced lattice basis, 133
logarithmic barrier function, 281
Lovász encoding, 252
lower envelope, 121
LP (linear optimization problem), 21
M-ellipsoid coverings, 50
Maclagan’s theorem, 91
Markov basis, 221, 228
matrix term order, 204
matrix-cut method, 277
matroid, 282
max-cut problem, 237
maximal decreasing path algorithm, 226
maximal lattice-free convex set, 287
meromorphic function, 115, 130
minimal critical path, 225
Minkowski’s first theorem, 31, 42
Minkowski–Hlawka theorem, 43
mixed-integer generating function, 176
mixed-integer summation technique, 176
modulo nonpointed polyhedra, 120
moment, 89
moment curve, 139
monic polynomial, 261
monomial, 105
monomial ideal, 206
monomial map, 136
monomial order, 203
monomial substitution, 144, 150, 184
Moore–Bellman–Ford’s algorithm, 88
multicommodity network flow problem, 77
multicriterion integer linear programming problem, 179, 181
multiepigraph, 183
multiexponent notation, 129
multigraph, 184
multiplicity, 198
multistage stochastic integer linear programs, 101
multivariate division algorithm, 205
N-fold 4-block decomposable, 77
N-fold 4-block decomposable integer program, 93
N-fold 4-block decomposable matrix, 77
N-fold integer program, 77, 96, 99
N-fold matrix, 79
Nash equilibrium, 190
Newton polytope, 268, 280
Noether’s normalization lemma, 256
nonbasic variable, 19
nonnegative modulo an ideal, 278
nonstandard monomial, 214
normal form
 Smith, 38, 133
normal form algorithm, 71
NP-complete, 245
NP-hard, 58
NuLA (Nullstellensatz linear algebra algorithm), 242
NuLA rank, 243, 253
Nullstellensatz, 213, 237, 239, 256
Nullstellensatz linear algebra algorithm (NuLA), 242
objective function, 108
auxiliary, 95
odd cycle, 237
odd wheel, 247
one-to-one projection, 152, 184
optimality certificate, 63, 65, 96, 223
optimization oracle, 93
oracle, 141, 148
comparison, 66, 85, 99
counting, 143
feasibility, 143
optimization, 93
separation, 22
orbit polytope, 288
oriented chordless 4-cycle, 246
oriented partial 3-cycle, 246
outcome vector, 179
output-polynomial time, 75
output-sensitive complexity analysis, 141
overcounting, 112

Pólya exponent, 269
Pólya’s lemma, 269
Pareto optimum, 179, 180, 184
Pareto strategy, 179, 180, 184
partition generating function, 283
permutahedron, 288
phase I, 68, 96, 100, 220
Pick’s theorem, 34
piecewise affine linear, 86, 96
pivot, 201
pivot rule, 282
point configuration, 120
pointed cone, 132
pointed polyhedron, 17, 130
pointed rational cone, 130
pointed rational polyhedron, 130
polar, 10
of a cone, 11, 130
of a set, 10
pole, 106, 135
polygon, 31
simple, 32
polyhedral cone, 5
polyhedral norm, 181, 185
polyhedron, 4
pointed, 17, 130
pointed rational, 130
simple, 120, 283
polynomial
monic, 261
polynomial map, 217
polynomial system, 237
polynomial-space polynomial-delay enumeration algorithm, 148, 182
polynomial-space polynomial-delay prescribed-order enumeration algorithm, 150
polynomial-time approximation scheme (PTAS), 157
polytopal subdivision, 121
polytope, 4
positive definite form, 269
positive semidefinite (PSD) matrix, 26
positive semidefinite (PSD) polynomial, 269
positively weighted generating function, 136, 147, 149, 165
Positivstellensatz, 274
Pottier’s algorithm, 71
preorder, 274
primal Barvinok decomposition, 152
primal-dual interior point algorithm, 281
probability measure, 89
project-and-lift, 73, 230
project-and-lift algorithm, 228
projection, 164, 180, 185
projection theorem, 182, 184
proximity, 93, 97
proximity-scaling technique, 93, 97
PSD (positive semidefinite) matrix, 26
pseudonorm, 187
pseudopolynomial, 97
PTAS (polynomial-time approximation scheme), 157
Putinar’s theorem, 277
quadratic assignment problem, 287
quadratic module, 276
quotient ring, 217
quotient rule, 160
radical ideal, 262, 278
Radon’s lemma, 5
range of the objective function, 173
rational function, 105, 106
rational generating function, 132
real roots, 198
recession cone, 16, 17
reduced Gröbner basis, 212, 218
reduced lattice basis, 51
reduced minimal Gröbner basis, 219
reduction path, 223
regular subdivision, 122
regular triangulation, 286
regular triangulation algorithm, 121
remainder of polynomial division, 204
removable singularity, 135
representation, 287
representation theorem for cones, 15
residue, 285
residue technique, 160
residue techniques, 162
resolution of polyhedra, 15
resultant, 256, 257, 259
reverse lexicographic triangulation, 279
Rolle’s theorem, 198
root, 194
- multiplicity of, 197
root of unity, 238
row reduction, 201
S-polynomial, 209, 218, 224, 227
S-vector, 227
sample, 154, 177
saturated ideal, 233
saturation, 92, 232
scenario, 89
Schmüdgen’s theorem, 276
SDP (semidefinite program), 27
selecting a Pareto optimum, 185
semialgebraic set, 274
semidefinite optimization problem (SDP), 27, 239
semidefinite programming, 27, 239, 275
semigroup, 110
separable convex function, 63, 79, 85, 93
98
separation oracle, 22
separation problem, 26
series expansion, 145
set covering, 287
set packing, 287
shelling, 124
shortest path, 88
shortest path problem, 286
shortest vector, 49
- approximate, 133
shortest vector problem (SVP), 49
sign variation, 199
sign-compatible, 44
signed decomposition, 113
simple polygon, 32
simple polyhedron, 120, 283
simplex, 120
simplicial complex, 286
simplicial cone, 120, 130
singularity, 106
- removable, 135
slack variable, 17
small-gaps theorem, 151
Smith normal form, 38, 133
SOS (sum of squares), 274
- modulo an ideal, 278
spanning set, 222
specialization, 184
square-free, 254
stability number, 252
stable set, 237, 252
stable set polytope, 252, 277
stochastic integer multicmodity flow problem, 78
stochastic integer program with second-order dominance relations, 78
strong duality, 20
Sturm sequence, 200
subdeterminant, 55, 97
subdivision
- convex, 122
- regular, 122
sublattice, 40
substitution, 136
sum of squares (SOS), 274
- modulo an ideal, 278
summation formula, 105
summation method for optimizing polynomials, 159, 161
sums of squares (SOS), 265
superadditivity, 98
support, 97
supported Pareto outcome, 180
supporting hyperplane, 18
Sylvester matrix, 258
symbolic differentiation, 109
symmetric groups, 288
system of linear equations, 5
system of polynomial equations, 193
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THexact</td>
<td>278</td>
</tr>
<tr>
<td>tangent cone</td>
<td>118</td>
</tr>
<tr>
<td>Taylor expansion</td>
<td>137</td>
</tr>
<tr>
<td>term order</td>
<td>203</td>
</tr>
<tr>
<td>graded lexicographic</td>
<td>204</td>
</tr>
<tr>
<td>graded reverse lexicographic</td>
<td>204</td>
</tr>
<tr>
<td>lexicographic</td>
<td>141</td>
</tr>
<tr>
<td>matrix</td>
<td>204</td>
</tr>
<tr>
<td>test set</td>
<td>63, 223</td>
</tr>
<tr>
<td>theorem</td>
<td></td>
</tr>
<tr>
<td>Artin's theorem</td>
<td>269</td>
</tr>
<tr>
<td>fundamental of algebra</td>
<td>169</td>
</tr>
<tr>
<td>Gram–Brianchon</td>
<td>118</td>
</tr>
<tr>
<td>Hilbert's basis</td>
<td>208, 218</td>
</tr>
<tr>
<td>Minkowski's first</td>
<td>31, 12</td>
</tr>
<tr>
<td>Minkowski–Hlawka</td>
<td>43</td>
</tr>
<tr>
<td>Schmüdgen's</td>
<td>276</td>
</tr>
<tr>
<td>small-gaps</td>
<td>151</td>
</tr>
<tr>
<td>Weyl–Minkowski</td>
<td>4, 9, 26</td>
</tr>
<tr>
<td>theorem of the alternative</td>
<td>239</td>
</tr>
<tr>
<td>theta body</td>
<td>277</td>
</tr>
<tr>
<td>k-th</td>
<td>278</td>
</tr>
<tr>
<td>theta-rank</td>
<td></td>
</tr>
<tr>
<td>three-way transportation problems</td>
<td>79</td>
</tr>
<tr>
<td>Todd polynomial</td>
<td>137</td>
</tr>
<tr>
<td>toric ideal</td>
<td>217</td>
</tr>
<tr>
<td>toric ring</td>
<td>217</td>
</tr>
<tr>
<td>total curvature</td>
<td>282</td>
</tr>
<tr>
<td>total degree</td>
<td>204</td>
</tr>
<tr>
<td>total dual integrality</td>
<td>257</td>
</tr>
<tr>
<td>total order</td>
<td>203</td>
</tr>
<tr>
<td>totally unimodular</td>
<td>57</td>
</tr>
<tr>
<td>totally unimodular matrix</td>
<td>74, 139</td>
</tr>
<tr>
<td>transportation matrix</td>
<td>83, 101</td>
</tr>
<tr>
<td>transportation polytope</td>
<td>79</td>
</tr>
<tr>
<td>transportation problem</td>
<td>79</td>
</tr>
<tr>
<td>traveling salesman problem</td>
<td>287</td>
</tr>
<tr>
<td>triangulation</td>
<td>111, 121, 130</td>
</tr>
<tr>
<td>of a cone</td>
<td>120</td>
</tr>
<tr>
<td>of a polytope</td>
<td>120</td>
</tr>
<tr>
<td>of a vector configuration</td>
<td>123</td>
</tr>
<tr>
<td>regular</td>
<td>286</td>
</tr>
<tr>
<td>reverse lexicographic</td>
<td>279</td>
</tr>
<tr>
<td>truncated Gröbner basis</td>
<td>233</td>
</tr>
<tr>
<td>truncated Taylor series</td>
<td>139</td>
</tr>
<tr>
<td>Turán graph</td>
<td>255</td>
</tr>
<tr>
<td>two-stage stochastic integer optimization problem</td>
<td>77</td>
</tr>
<tr>
<td>two-stage stochastic integer programming, type</td>
<td>88</td>
</tr>
<tr>
<td>uniform convergence</td>
<td>107, 130</td>
</tr>
<tr>
<td>unimodular</td>
<td>150, 279, 287</td>
</tr>
<tr>
<td>unimodular cone</td>
<td>112, 133</td>
</tr>
<tr>
<td>unimodular matrix</td>
<td>134, 136, 152</td>
</tr>
<tr>
<td>universality theorem</td>
<td>79</td>
</tr>
<tr>
<td>V-representation</td>
<td>10</td>
</tr>
<tr>
<td>valid inequality</td>
<td>18</td>
</tr>
<tr>
<td>valuation</td>
<td>131</td>
</tr>
<tr>
<td>vanishing ideal</td>
<td>202</td>
</tr>
<tr>
<td>variety</td>
<td>201, 239, 262</td>
</tr>
<tr>
<td>zero-dimensional</td>
<td>214, 239</td>
</tr>
<tr>
<td>vector configuration</td>
<td>123</td>
</tr>
<tr>
<td>vector partition function</td>
<td>283</td>
</tr>
<tr>
<td>vertex</td>
<td>18</td>
</tr>
<tr>
<td>volume</td>
<td>23</td>
</tr>
<tr>
<td>von Neumann</td>
<td>20</td>
</tr>
<tr>
<td>Voronoi cell</td>
<td>50</td>
</tr>
<tr>
<td>weak approximation algorithm</td>
<td>158</td>
</tr>
<tr>
<td>weak approximation scheme</td>
<td>158</td>
</tr>
<tr>
<td>weak composition</td>
<td>95</td>
</tr>
<tr>
<td>weak duality</td>
<td>20</td>
</tr>
<tr>
<td>well-ordering</td>
<td>203</td>
</tr>
<tr>
<td>Weyl–Minkowski theorem</td>
<td>4, 9, 26</td>
</tr>
<tr>
<td>width</td>
<td>54</td>
</tr>
<tr>
<td>zero divisor</td>
<td>131</td>
</tr>
<tr>
<td>zero-dimensional variety</td>
<td>214, 239</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>