Preface

It is undeniable that geometric ideas have been very important to the foundations of modern discrete optimization. The influence that geometric algorithms have in optimization was elegantly demonstrated in the, now classic, book *Geometric Algorithms and Combinatorial Optimization* [145] written more than 25 years ago by M. Grötschel, L. Lovász, and A. Schrijver. There, in a masterful way, we were introduced to the power that the geometry of ellipsoids, hyperplanes, convex bodies, and lattices can wield in optimization. After many years, students of integer programming today are exposed to notions such as the equivalence of separation and optimization, convex hulls, and membership, and to the many examples of successful application of these ideas such as efficient algorithms for matchings on graphs and other problems with good polyhedral characterizations [298], [299], [300] and the solution of large-scale traveling salesman problems [14]. These results were a landmark success in the theory of integer optimization.

But in just the past 15 years, there have been new developments in the understanding of the structure of polyhedra, convex sets, and their lattice points that have produced new algorithmic ideas for solving integer programs. These techniques add a new set of powerful tools for discrete optimizers and have already proved very suitable for the solution of a number of hard problems, including attempts to deal with nonlinear objective functions and constraints in discrete optimization. Unfortunately, many of these powerful tools are not yet widely known or applied. Perhaps this is because many of the developments have roots in areas of mathematics that are not normally part of the standard curriculum of students in optimization and have a much more algebraic flavor. Examples of these new tools include algebraic geometry, commutative algebra, representation theory, and number theory.

We feel that the unfamiliar technical nature of these new ideas and the lack of expository accounts have unnecessarily delayed the popularity of these techniques among those working in optimization. We decided to write a text that would not demand any background beyond what we already assume from people in mathematical programming courses. This monograph is then intended as a short, self-contained, introductory course in these new ideas and algorithms with the hope of popularizing them and inviting new applications. We were deeply inspired by the influential book [145] and we humbly try to follow in its footsteps in the hope that future generations continue to see the interdependence between beautiful mathematics and the creation of efficient optimization algorithms.

This book is meant to be used in a quick, intense course, no longer than 15 weeks. This is not a complete treatise on the subject, but rather an invitation to a set of new ideas and tools. Our aim is to popularize these new ideas among workers in optimization.

- We want to make it possible to read this book even if you are a novice of integer and linear programming (and we have taught courses with some students in that category). For this reason, we open in Part I with some of the now well-established techniques that originated before the beginning of the 1990s, a time when linear and
convex programming and integer programming underwent major changes thanks to the ellipsoid method, semidefinite programming, lattice basis reduction, etc. Most of what is contained in Part I is a short summary of tools that students in optimization normally encounter in a course based on the excellent books \[\text{[50, 145, 206, 259, 296]} \] and probably should be skipped by such readers. They should go directly to the new exciting techniques in Parts II, III, IV, and V. Readers that start with Part I will add an extra three or four weeks to the course.

- Parts II, III, IV, and V form the core of this book. Roughly speaking, when the reader works in any of these sections, nonlinear, nonconvex conditions are central, making the tools of algebra necessary. When studying only these parts, the course is planned to take about 12 weeks. In fact, all the parts are quite independent from each other and each can be the focus of independent student seminars.

 - We begin in Part II with the idea of test sets and Graver bases. We show how they can be used to prove results about integer programs with linear constraints and convex objective functions.
 - Part III discusses the use of generating functions to deal with integer programs with linear constraints but with nonlinear polynomial objectives and/or with multiobjectives.
 - Part IV discusses the notion of Gröbner bases and their connection with integer programming.
 - Part V discusses the solution of global optimization problems with polynomial constraints via a sequence of linear algebra or semidefinite programming systems. These are generated based on Hilbert’s Nullstellensatz and its variations.

The book contains several exercises to help students learn the material. A course based on these lectures should be suitable for advanced undergraduates with a solid mathematical background (i.e., very comfortable with proofs in linear algebra and real analysis) or for graduate students who have already taken an introductory linear programming class.

Acknowledgments. We are truly grateful to many people who helped us both on producing the research presented here and later on presenting it to a larger audience of students and colleagues.

First and foremost our collaborators and coauthors in many parts of this book were fundamental for arriving at this point; their energy and ideas show on every page. In fact several portions of the book are taken partially from our joint work. So many, many thanks for everything to Robert Hildebrand, Chris Hillar, Jon Lee, Peter N. Malkin, Susan Margulies, Mohamed Omar, Shmuel Onn, Pablo Parrilo, Uriel Rothblum, Maurice Queyranne, Christopher T. Ryan, Rüdiger Schultz, Sven Verdoolaege, Robert Weismantel, and Kevin Woods. Thanks!

Many other friends have been faithful supporters and collaborators in other closely related projects or have developed ideas of great importance to this book. We learned so much about discrete optimization from talking to Karen Aardal, Alper Atamtürk, David Avis, Egon Balas, Velleda Baldoni, Imre Bárány, Sasha Barvinok, Amitabh Basu, Nicole Berline, Dimitris Bertsimas, Lou Billera, Greg Blekherman, Sam Burer, Bill Cook, Sanjeeb Dash, Antoine Deza, Etienne de Klerk, Matthias Ehrgott, Fritz Eisenbrand, Komei Fukuda, Bernd Gärtner, Michel Goemans, João Gouveia, David Haws, Nicolai Hähnle, Martin Henk, Serkan Hoşten, Peter Huggins, Michael Joswig, Volker Kaibel, Gil Kalai,
Preface

We received comments, corrections, great questions, suggestions, encouragement, and help from Ilan Adler, Egon Balas, Dave Bayer, Matthias Beck, Victor Blanco, David Bremner, Winfried Bruns, Katherine Burgraf, Samantha Capozzo, Gérard Cornuéjols, Persi Diaconis, Brandon E. Dutra, Jennifer Galovich, Harvey Greenberg, Peter Gritzmann, Özdönök Günlük, Christian Haase, Ilya Hicks, Dorit Hochbaum, Mark Junod, Yvonne Kemper, Eddie Kim, Bala Krishnamoorthy, Jeff Lagarias, Karla Lanzas, Adam Letchford, Quentin Louveaux, Laci Lovász, François Margot, Tyrrell McAllister, Juan Meza, Gabor Pataki, Amber Puha, Mihai Putinar, Eric Rains, Jörg Rambau, Jürgen Richter-Gebert, Carla Savage, Lex Schrijver, Markus Schweighofer, Renata Sotirov, Frank Sottile, Tamon Stephen, Seth Sullivan, Richard Tapia, Andreas Waechter, Roger Wets, Angelika Wiegele, Mark C. Wilson, Peter Winkler, Alexander Woo, David Woodruff, Doron Zeilberger, Yuriy Zinchenko, and Uri Zwick. We received help from many students that heard lectures from us on the topic. Thanks for your patience and effort! We give special thanks to Astrid Köppe for the artwork she provided for the cover.

We are truly grateful to the NSF for the financial support that made this book possible. Research and lectures about this topics were also produced with the support of the following institutions: University of California, Davis, Universität Magdeburg, Technische Universität Darmstadt, and Technische Universität München. We must stress that IMA (Institute for Mathematics and its Applications) at the University of Minnesota, the Rocky Mountains Mathematics Consortium, Banff International Research Station, MSRI (Mathematical Sciences Research Institute) at UC Berkeley, IPAM (Institute for Pure and Applied Mathematics) at UCLA, AIM (American Institute of Mathematics) at Palo Alto, MAA (Mathematical Association of America), and St. John’s University deserve special acknowledgment as they allowed parts of these notes to be presented in short courses or be the focus of special workshops.

Finally, our families are very special in our lives and this project is partly theirs too, built with their love and patience in our long crazy hours and very distracted minds.

Jesús is truly grateful to his wife Ingrid who has put up with him and his difficult workaholic nature for a long, long time. Mil gracias amor mio de todo corazón, todo te lo debo a ti. Their two sons Antonio and André were just little kids when the research on this book began to flourish. It is a great pleasure to see them both grow so strong in spirit and intellect. Muchas, muchas gracias hijos míos y perdón por la falta de atención, estoy orgullosa de ustedes. Mil gracias a doña Antonia y Judith, queridas madre y hermanas, que siempre me quieren y me apoyan. Gracias a toda la familia y amigos en México por lo mucho que me dan.

Raymond thanks his wife Susi for her understanding and love and for the two little bright stars in their lives, Carina and Paula. You three are the best that ever happened to me!

Jesús A. De Loera, Raymond Hemmecke, Matthias Köppe