Contents

List of Figures ix
List of Tables xiii
List of Algorithms xv
Preface xvii

I Established Tools of Discrete Optimization 1
1 Tools from Linear and Convex Optimization 3
1.1 Convex sets and polyhedra 3
1.2 Farkas’ lemma and feasibility of polyhedra 5
1.3 Weyl–Minkowski’s representation theorem 9
1.4 Decomposition of polyhedra as sums of cones and polytopes 14
1.5 Faces, dimension, extreme points 17
1.6 Duality of linear optimization 19
1.7 Remarks on computational complexity 21
1.8 The ellipsoid method and convex feasibility 22
1.9 Applications of the ellipsoid method 26
1.10 Notes and further references 27
1.11 Exercises 28

2 Tools from the Geometry of Numbers and Integer Optimization 29
2.1 Geometry of numbers in the plane 29
2.2 Lattices and linear Diophantine equations 34
2.3 Hermite and Smith 34
2.4 Minkowski’s theorems 41
2.5 Gordan and Dickson 43
2.6 Hilbert 44
2.7 Lenstra, Lenstra, Lovász, and the shortest vector problem 49
2.8 Lenstra’s algorithm, integer feasibility, and optimization 53
2.9 The integer hull of a polyhedron and cutting planes 55
2.10 Linear versus nonlinear discrete optimization 57
2.11 Notes and further references 58
2.12 Exercises 59

8 Global Mixed-Integer Polynomial Optimization via Summation
 8.1 Approximation algorithms and schemes 157
 8.2 The summation method ... 159
 8.3 FPTAS for maximizing nonnegative polynomials over integer points of polytopes .. 159
 8.4 Extension to mixed-integer optimization via discretization 165
 8.5 Extension to objective functions of arbitrary range 172
 8.6 Notes and further references ... 176
 8.7 Exercises .. 176

9 Multicriteria Integer Linear Optimization via Integer Projection 179
 9.1 Introduction .. 179
 9.2 The rational generating function encoding of all Pareto optima 182
 9.3 Efficiently listing all Pareto optima 185
 9.4 Selecting a Pareto optimum using polyhedral global criteria 185
 9.5 Selecting a Pareto optimum using a nonpolyhedral global criterion . 186
 9.6 Notes and further references ... 190
 9.7 Exercises .. 190

IV Gröbner Basis Methods .. 191

10 Computations with Polynomials ... 193
 10.1 Introduction .. 193
 10.2 Univariate polynomials ... 194
 10.3 Systems of multivariate polynomial equations 201
 10.4 Monomial orders and the multivariate division algorithm 203
 10.5 Gröbner bases and Buchberger’s algorithm 208
 10.6 Notes and further references ... 214
 10.7 Exercises .. 214

11 Gröbner Bases in Integer Programming 217
 11.1 Toric ideals and their Gröbner bases 217
 11.2 Toric ideals and integer programming 218
 11.3 Generating sets and toric ideals of lattice ideals 220
 11.4 Computing generating sets of lattice ideals 228
 11.5 Notes and further references ... 232
 11.6 Exercises .. 233

V Nullstellensatz and Positivstellensatz Relaxations 235

12 The Nullstellensatz in Discrete Optimization 237
 12.1 Motivation and examples .. 237
 12.2 Nullstellensatz and solving combinatorial systems of equations 239
 12.3 A simple proof of the Nullstellensatz 256
 12.4 Notes and further references ... 262
 12.5 Exercises .. 263
Contents

13 Positivity of Polynomials and Global Optimization

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Unconstrained optimization of polynomials and sums of squares</td>
<td>265</td>
</tr>
<tr>
<td>13.2</td>
<td>Positivstellensätze for semidefinite programming relaxations</td>
<td>273</td>
</tr>
<tr>
<td>13.3</td>
<td>Approximating the integer hull of combinatorial problems</td>
<td>277</td>
</tr>
<tr>
<td>13.4</td>
<td>Notes and further references</td>
<td>279</td>
</tr>
<tr>
<td>13.5</td>
<td>Exercises</td>
<td>280</td>
</tr>
</tbody>
</table>

14 Epilogue

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Algebraic and topological ideas in linear optimization</td>
<td>281</td>
</tr>
<tr>
<td>14.2</td>
<td>Other generating functions techniques in integer programming</td>
<td>283</td>
</tr>
<tr>
<td>14.3</td>
<td>Variations on Gomory’s group relaxations</td>
<td>285</td>
</tr>
<tr>
<td>14.4</td>
<td>Connections to matrix analysis and representation theory</td>
<td>287</td>
</tr>
</tbody>
</table>

Bibliography

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>289</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
</tr>
</tbody>
</table>