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Chapter 1 - Mathematical Preliminaries

1.1 Let S ⊆ Rn.

(a) Suppose that T is an open set satisfying T ⊆ S. Prove that T ⊆ int(S).

(b) Prove that the complement of int(S) is the closure of the complement of S.

(c) Do S and cl(S) always have the same interiors?

1.2 For any x ∈ Rn and any nonzero vector d ∈ Rn, compute the directional derivative
f ′(x;d) of

f(x) =
∣∣‖x− a‖2 − δ

∣∣+ max{cT1 x + β1, c
T
2 x + β2},

where a, c1, c2 ∈ Rn and δ ∈ R++, β1, β2 ∈ R.

Chapter 2 - Optimality Conditions for Unconstrained

Optimization

2.1 For each of the following matrices determine, without computing eigenvalues, the
interval of α for which they are positive definite/negative definite/positive semidefi-
nite/negative semidefinite/indefinite:

(a) Bα =

−1 α −1
α −4 α
−1 α −1

 .

(b) Eα =


1 α 0 0
α 2 α 0
0 α 2 α
0 0 α 1

 .

2.2 Let A ∈ Rn×n be a symmetric matrix. Assume that there exist two indices i 6= j for
which Ajj, Aij 6= 0 and Aii = 0. Prove that A is indefinite.

2.3 Let f(x1, x2) = x21 − 2x1x
2
2 + 1

2
x42.

(a) Is the function f coercive? explain your answer.

(b) Find the stationary points of f and classify them (strict/nonstrict local/global
minimum/maximum or a saddle point).
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2.4 Consider the function f(x, y) = x2−x2y2+y4. Find all the stationary points of f and
classify them (strict/non-strict, local/global, minimum/maximum or a saddle point).

Chapter 3 - Least Squares

3.1 Let A ∈ Rm×n,b ∈ Rm,L ∈ Rp×n and λ ∈ R++. Consider the function

f(x) = ‖Ax− b‖22 + λ‖Lx‖1.

(a) Show that if f is coercive, then Null(A) ∩ Null(L) = {0}.
(b) Show that the contrary also holds, i.e., if Null(A) ∩ Null(L) = {0} then f is

coercive.

Chapter 6 - Convex Sets

6.1 Show that the following set is not convex:

S = {x ∈ R2 : 3x21 + x22 + 4x1x2 − x1 + 4x2 ≤ 10}.

6.2 (a) Prove that the extreme points of ∆n = {x :
∑n

i=1 xi = 1, xi ≥ 0} are given by
{e1, e2, . . . , en}.

(b) For each of the following sets specify the corresponding extreme points:

(i) {x : eTx ≤ 1,x ≥ 0}.
(ii) B[c, r] where c ∈ Rn and r > 0.

(iii) {(x1, x2)T : 9x21 + 16x22 + 24x1x2 − 6x1 − 8x2 + 1 ≤ 0, x1 ≥ 0, x2 ≥ 0}.

Chapter 7 - Convex Functions

7.1 Find the optimal solution of the problem

maxx∈R3 2x21 + x22 − x23 + 2x1 − 3x2 + 4x3
s.t. x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

7.2 Let f : Rn → R be convex, and let A ∈ Rm×n be an m × n matrix. Consider the
function h defined as follows:

h(y) = min
x
{f(x) : Ax = y},

where we assume that h(y) > −∞ for all y. Show that h is convex.
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Chapter 8 - Convex Optimization

8.1 Consider the problem

min max{|x1 − x2|, |x2 − x3|, |x1 − x3|}+ x21 + 2x22 + 3x23 − 2x2x3

s.t. (4x21 + 6x22 − 2x1x2 + 1)4 +
x23

x1+x2
≤ 150

x1 + x2 ≥ 1

(a) Show that it is convex.

(b) Write a CVX code that solves it.

(c) Write down the optimal solution (by running CVX).

8.2 Consider the following convex optimization problem:

min
√

2x21 + 4x1x2 + 3x22 + 1 + 7
s.t. ((x21 + x22)

2 + 1)2 ≤ 100x1
x21+4x22+4x1x2
2x1+x2+x3

≤ 10

1 ≤ x1, x2, x3 ≤ 10.

(a) Prove that the problem is convex.

(b) Write a CVX code for solving the problem.

8.3 Prove that the following problem is convex in the sense that it consists of minimizing
a convex function over a convex feasible set.

min log (ex1−x2 + ex2+x3)
s.t. x21 + x22 + 2x23 + 2x1x2 + 2x1x3 + 2x2x3 ≤ 1,

(x1 + x2 + 2x3)(2x1 + 4x2 + x3)(x1 + x2 + x3) ≥ 1,
ee

x1 + [x2]
3
+ ≤ 7,

x1, x2, x3 ≥ 1
10
.

8.4 Consider the problem

(Q)
min ax21 + bx22 + cx1x2
s.t. 1 ≤ x1 ≤ 2,

0 ≤ x2 ≤ x1.

where a, b, c ∈ R.

(a) Prove that there exists a minimizer for problem (Q).

(b) Prove that if a < 0, b < 0 and c2 − 4ab ≤ 0, then the optimal value of problem
(Q) is

4 min{a, a+ b+ c}.

(c) Prove that if a > 0, b > 0 and c2 > 4ab, then problem (Q) has a unique solution.
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8.5 Consider the optimization problem

(P)

min
√
x21 + 4x1x2 + 5x22 + 2x1 + 6x2 + 5− x2

x2+1

s.t. (|x1 − 1|+ |x2 − 1|)2 +
x41−x22
x21+x2

≤ 7

x2 ≥ 1.

(a) Prove that x21 + 4x1x2 + 5x22 + 2x1 + 6x2 + 5 ≥ 0 for any x1, x2.

(b) Prove that problem (P) is convex.

(c) Write a CVX code that solves the problem.

8.6 Consider the problem

(P) max{g(y) : f1(y) ≤ 0, f2(y) ≤ 0},

where g : Rn → R is concave and f1, f2 : Rn → R are convex. Assume that the
problem max{g(y) : f1(y) ≤ 0} has a unique solution ỹ. Let Y ∗ be the optimal set
of problem (P). Prove that exactly one of the following two options holds:

(i) f2(ỹ) ≤ 0 and in this case Y ∗ = {ỹ}.
(ii) f2(ỹ) > 0 and in this case Y ∗ = argmax{g(y) : f1(y) ≤ 0, f2(y) = 0}.

8.7 Show that the following optimization problem can be cast as a convex optimization
problem and write a CVX code for solving it.

min
4x21+2x1x2+5x22

x1+x2
+ (x21 + x22 + 1)2

s.t. x1
x1+1

+ x2
x2+1

≥ 1

x21 ≤ x2
√

2x1 + 3x2
x1, x2 ≥ 1.

8.8 Show that the following is a convex optimization problem and write a CVX code for
solving it.

min x21 + (4x1 + 5x2)
2 − (3x1 + 4x2 + 1)2

s.t.
√
x21 + x22 + 1 ≤ √x2

x21−x22
x2
≤ min{x2 − |x1 + 3x2|, 7}

x2 ≥ 1.

Chapter 9 - Optimization over a Convex Set

9.1 Consider the set

Box[`,u] ≡ {x ∈ Rn : `i ≤ xi ≤ ui, i = 1, 2, . . . , n}
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where `,u ∈ Rn are given vectors that satisfy ` ≤ u. Consider the minimization
problem

(P) min{f(x) : x ∈ Box[`,u]},

where f is continuously differentiable function over Box[`,u]. Prove that x∗ ∈
Box[`,u] is a stationarity point of (P) if and only if

∂f

∂xi
(x∗)


= 0, li < x∗i < ui,

≤ 0, x∗i = ui,

≥ 0, x∗i = li.

9.2 In the ”source localization problem”1 we are givenm locations of sensors a1, a2, . . . , am ∈
Rn and approximate distances between the sensors and an unknown ”source” located
at x ∈ Rn:

di ≈ ‖x− ai‖2.

The problem is to find/estimate x given the locations a1, a2, . . . , am and the approx-
imate distances d1, d2, . . . , dm. The following natural formulation of the problem as a
minimization problem was introduced in Exercise 4.5:

min
x∈Rn

{
m∑
i=1

(‖x− ai‖2 − di)2
}
. (SL)

(a) Show that the problem given by (SL) is equivalent to the problem

min f(x,u1,u2, . . . ,um) ≡
∑m

i=1 ‖x− ai‖22 − 2diu
T
i (x− ai) + d2i

s.t. ‖ui‖2 ≤ 1, i = 1, . . . ,m,
x ∈ Rn,

(SL2)

in the sense that x is an optimal solution of (SL) if and only if there exists
(u1,u2, . . . ,um) such that (x,u1,u2, . . . ,um) is an optimal solution of (SL2).

(b) Find a Lipschitz constant of the function f .

(c) Consider the two-dimensional problem (n = 2) with 5 anchors (m = 5) and data
generated by the MATLAB commands

randn(’seed’,317);

A=randn(2,5);

x=randn(2,1);

d=sqrt(sum((A-x*ones(1,5)).^2))+0.05*randn(1,5);

d=d’;

1The description of the problem also appears in Exercise 4.5
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The columns of the 2× 5 matrix A are the locations of the five sensors, x is the
true location of the source and d is the vector of noisy measurements between the
source and the sensors. Write a MATLAB function that implements the gradient
projection algorithm employed on problem (SL2) for the generated data. Use
the following step size selection strategies

(i) constant step size.

(ii) backtracking with parameters s = 1, α = 0.5, β = 0.5.

Start both methods with the initial vectors (1000,−500)T and ui = 0 for all i =
1, . . . ,m. Run both algorithms for 100 iterations and compare their performance.

Chapter 10 - Optimality Conditions for Linearly Con-

strained Problems

10.1 Let A ∈ Rm×n. Prove that the following two claims are equivalent.

(A) The system
Ax = 0,x > 0

has no solution.

(B) There exists a vector y ∈ Rn for which ATy ≤ 0 and ATy is not the zeros
vector.

10.2 Consider the problem

(Q)
minx∈Rn

1
2
xTQx + dTx

s.t. aT1 x ≤ b1,
aT2 x = b2,

where Q ∈ Rn×n (n ≥ 3) is positive definite, d, a1, a2 ∈ Rn and b1, b2 ∈ R. Assume
that aT1Q

−1a1 = aT2Q
−1a2 = 2, aT2Q

−1a1 = 0, a1 6= 0, a2 6= 0

(a) Are the KKT conditions necessary and sufficient for problem (Q)? explain your
answer.

(b) Prove that the problem is feasible.

(c) Write the KKT conditions explicitly.

(d) Find the optimal solution of the problem.

Chapter 11 - The KKT Conditions

11.1 Consider the problem
max x31 + x32 + x33
s.t. x21 + x22 + x23 = 1.
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(a) Is the problem convex?

(b) Prove that all the local maximum points of the problem are also KKT points.

(c) Find all the KKT points of the problem.

(d) Find the optimal solution of the problem.

Chapter 12 - Duality

12.1 Consider the following optimization problem:

min
x∈Rn,t∈R

1
2
‖x‖22 + ct

s.t. Ax = b + te
t ≥ 0,

(P5)

where A ∈ Rm×n,b ∈ Rm, c ∈ R, and as usual e is the vector of all ones. Assume in
addition that the rows of A are linearly independent.

(i) Find a dual problem to problem (P5) (do not assign a Lagrange multiplier to
the nonnegativity constraint).

(ii) Solve the dual problem obtained in part (i) and find the optimal solution of
problem (P5).

12.2 Consider the optimization problem (with the convention that 0 log 0 = 0):

min aTx +
∑n

i=1 xi log xi
s.t. x ∈ ∆n,

where a ∈ Rn and ∆n is the unit simplex.

(i) Show that the problem cannot have more than one optimal solution.

(ii) Find a dual problem in one dual decision variable.

(iii) Solve the dual problem.

(iv) Find the optimal solution of the primal problem.

12.3 Let E ∈ Rk×n, f ∈ Rn, a ∈ Rm,A ∈ Rm×n,b ∈ Rm and c1, c2, . . . , cp ∈ Rn. Consider
the problem

(P)
minx∈Rn,z∈Rm

1
2
‖Ex‖22 + 1

2
‖z‖22 + fTx + aTz +

∑p
i=1 e

cTi x

s.t. Ax + z = b,
z ≥ 0.

Assume that E has full column rank.
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(a) Show that the objective function is coercive.

(b) Show that if the set P = {x ∈ Rn : Ax ≤ b} is nonempty, then strong duality
holds for problem (P).

(c) Write a dual problem for problem (P).

12.4 Consider the problem

minx,y∈Rn

√
‖x‖22 + 4 + aTy + ‖x‖2

s.t. Bx + Cy ≤ d,
‖y‖2 ≤ 1,

where a ∈ Rn,B,C ∈ Rm×n,d ∈ Rm.

(a) Show that if BBT � 0, then strong duality holds for the problem.

(b) Find a dual problem.

12.5 Consider the following convex optimization problem:

(P)
min ‖Ax + b‖2 + ‖Lx‖1 + ‖Mx‖22 +

∑n
i=1 xi log xi

s.t. x ≥ 0,

where A ∈ Rm×n,b ∈ Rm,L ∈ Rp×n,M ∈ Rq×n. Write a dual problem of (P). Do
not perform any transformations that ruin the convexity of the problem.

12.6 (a) Prove that for any a ∈ Rn, the following holds:

min aTx + ‖x‖∞ =

{
0, ‖a‖1 ≤ 1,
−∞, else.

(b) Consider the following minimization problem:

(P)
min

√
‖Ax‖22 + 1 + ‖x‖∞

s.t. Bx ≤ c,

where A ∈ Rd×n,B ∈ Rm×n, c ∈ Rm. Assume that the problem is feasible. Find
a dual problem to (P). Do not perform any transformations that might ruin the
convexity of the problem.

12.7 Consider the problem

(G)
min xTQx + 2bTx
s.t. xTQx + 2cTx + d ≤ 0,

where Q ∈ Rn×n is positive definite, b, c ∈ Rn and d ∈ R.

(a) Under which (explicit) condition on the data (Q,b, c, d) is the problem feasible?
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(b) Under which (explicit) condition on the data (Q,b, c, d) does strong duality
hold?

(c) Find a dual problem to (G) in one variable.

(d) Assume that Q = I. Find the optimal solution of the primal problem (G)
assuming that the condition of part (b) holds. Hint: recast the problem as a
problem of finding an orthogonal projection of a certain point to a certain set.

12.8 Consider the convex problem

(P)
minx∈Rn ‖Ax− b‖1 + ‖x‖∞ −

∑n
i=1 log(xi)

s.t. Cx ≤ d,
x ≥ e,

where A ∈ Rm×n,b ∈ Rm,C ∈ Rp×n,d ∈ Rp and e is the vector of all ones. Find a
dual problem of (P). Do not make any transformations that will ruin the convexity
of the problem.

12.9 Let u ∈ Rn
++. Consider the problem

min

{
n∑
j=1

x2j :
n∑
j=1

xj = 1, 0 ≤ xj ≤ uj

}

(a) Write a necessary and sufficient condition (in terms of the vector u) under which
the problem is feasible.

(b) Write a dual problem in one variable.

(c) Describe an algorithm for solving the optimization problem using the dual prob-
lem obtained in part (b).
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