Contents

List of Figures ix
List of Tables xv
Preface xvii

1 Introduction to Simulink 1
 1.1 Using a Picture to Write a Program 1
 1.2 Example 1 — Galileo Drops Two Objects from the Leaning Tower of Pisa 5
 1.3 Example 2 — Modeling a Pendulum and the Escapement of a Clock 18
 1.3.1 History of Pendulum Clocks 18
 1.3.2 A Simulation Model for the Clock 20
 1.4 Example 3: Complex Rotations – The Foucault pendulum 24
 1.4.1 Forces from Rotations 25
 1.4.2 Foucault pendulum Dynamics 26
 1.5 Further Reading ... 31

2 Linear Differential Equations, Matrix Algebra and Control Systems 33
 2.1 Linear Differential Equations – Linear Algebra 33
 2.1.1 Solving a Differential Equation at Discrete Time Steps 36
 2.1.2 Linear Differential Equations in Simulink 38
 2.2 Laplace Transforms for Linear Differential Equations 40
 2.3 Linear Feedback Control 44
 2.3.1 What is a Control System? 44
 2.3.2 Control Systems and Linear Differential Equations 49
 2.4 Linearization and the Control of Linear Systems 49
 2.4.1 Linearization 50
 2.4.2 Eigenvalues and the Response of a Linear System 51
 2.5 Poles and the Roots of the Characteristic Polynomial 55
 2.5.1 Feedback of the Position of the Mass in the Spring-Mass Model 56
 2.5.2 Feedback of the Velocity of the Mass in the Spring Mass Model 57
 2.5.3 Comparing Position and Rate Feedback 61
 2.5.4 The Structure of a Control System – Transfer Functions 62
 2.6 Transfer Functions – Bode Plots 64

From "Numerical Computing With Simulink, Volume I" by Richard Gran.
This book is available for purchase at www.siam.org/catalog.
iv Contents

2.6.1 The Bode Plot for Continuous Time Systems 65
2.6.2 Calculating the Bode Plot for Continuous Time Systems 66
2.7 PD Control, PID Control and Full State Feedback 70
 2.7.1 PD Control 70
 2.7.2 PID Control 72
 2.7.3 Full State Feedback 74
 2.7.4 Getting Derivatives for PID Control or Full State Feedback ... 75
2.8 Further Reading 80

3 Nonlinear Differential Equations 83
 3.1 The Lorenz Attractor 83
 3.1.1 Linear Operating Points – Why the Lorenz Attractor is Chaotic . 85
 3.2 Differential Equation Solvers in MATLAB and Simulink 88
 3.3 Tables, Interpolation and Curve Fitting in Simulink 90
 3.3.1 The Simple Lookup Table 90
 3.3.2 Interpolation – Fitting a Polynomial to the Data and Using the Result in Simulink .. 93
 3.3.3 Using Real Data in the Model – From Workspace and File 95
 3.4 Rotations in 3 Dimensions – Euler Rotations, Axis-angle Representations, Direction Cosines and the Quaternion 97
 3.4.1 Euler Angles 97
 3.4.2 Direction Cosines 100
 3.4.3 Axis-Angle Rotations 101
 3.4.4 The Quaternion Representation 102
 3.5 Modeling the Motion of a Satellite in Orbit 108
 3.5.1 Creating an Attitude Error when Using Direction Cosines 110
 3.5.2 Creating an Attitude Error Using Quaternion Representations ... 111
 3.5.3 The Complete Spacecraft Model 112
 3.6 Further Reading 114

4 Digital Signal Processing in Simulink 117
 4.1 Difference Equations, Fibonacci Numbers and z-Transforms 118
 4.1.1 The z-Transform 121
 4.1.2 Fibonacci (again) using z-Transforms 122
 4.2 Digital Sequences, Digital Filters and Signal Processing 123
 4.2.1 Digital Filters – Using z-Transforms – Discrete Transfer Functions . 123
 4.2.2 Simulink Experiments –Filtering a Sinusoidal Signal and Aliasing . 126
 4.2.3 The Simulink Digital Library 131
 4.3 Matrix Algebra and Discrete Systems 132
 4.4 The Bode Plot for Discrete Time Systems 137
 4.5 Digital Filter Design – Sampling Analog Signals, the Sampling Theorem and Filters .. 139
 4.5.1 Sampling and Reconstructing Analog Signals 140
 4.5.2 Analog Prototypes of Digital Filters – The Butterworth Filter ... 144
 4.6 The Signal Processing Blockset 148
 4.6.1 Fundamentals of the Signal Processing Blockset – Analog Filters ... 149

From "Numerical Computing With Simulink, Volume I" by Richard Gran.
This book is available for purchase at www.siam.org/catalog.
Contents

4.6.2 Creating Digital Filters from Analog Filters .. 151
4.6.3 Digital Signal Processing .. 152
4.6.4 Implementing Digital Filters – Structures and Limited Precision 157
4.6.5 Batch Filtering Operations, Buffers and Frames 163
4.7 The Phase Lock Loop .. 171
4.8 Further Reading .. 175

5 Random Numbers, White Noise and Stochastic Processes 179
5.1 Modeling with Random Variables in Simulink – Monte Carlo Simulations 179
5.1.1 Monte Carlo Analysis and the Central Limit Theorem 180
5.1.2 Simulating a Rayleigh Distributed Random Variable 182
5.2 Stochastic Processes and White Noise .. 184
5.2.1 The Random Walk Process .. 185
5.2.2 Brownian motion and white noise ... 187
5.3 Simulating System with White Noise Inputs Using the Weiner Process 190
5.3.1 White Noise and a Spring Mass Damper System 190
5.3.2 Noisy Continuous and Discrete Time Systems – The Covariance Matrix .. 193
5.3.3 Discrete Time Equivalent of a Continuous Stochastic Process 195
5.3.4 Modeling a Specified Power Spectral Density – One-Over-f Noise 200
5.4 Further Reading .. 206

6 Modeling a Partial Differential Equation in Simulink 209
6.1.1 Finite Dimensional Models .. 210
6.1.2 An Electrical Analogy of the Heat Equation 211
6.2 Converting the Finite Model into Equations for Simulation with Simulink 213
6.2.1 Using Kirchhoff’s Law to Get the Equations 214
6.2.2 The State-Space Model .. 216
6.3 Partial Differential Equations for Vibration ... 220
6.4 Further Reading .. 220

7 Stateflow – A Tool for Creating and Coding State Diagrams, Complex Logic, Event Driven Actions and Finite State Machines 223
7.1 Properties of Stateflow – Building a Simple Model 224
7.1.1 Stateflow Semantics .. 226
7.1.2 Making the Simple Stateflow Chart Do Something 229
7.1.3 Following Stateflow’s Semantics Using the Debugger 232
7.2 Using Stateflow – A Controller for Home Heating 232
7.2.1 Creating a Model of the System and an Executable Specification 234
7.2.2 Stateflow’s Action Language Types .. 237
7.2.3 The Heating Controller Layout ... 238
7.2.4 Adding the User Actions, the Digital Clock, and the Stateflow chart to the Simulink Model of the Home Heating System 239
7.2.5 Some Comments on Creating the GUI .. 247
7.3 Further Reading .. 249
Contents

8 Physical Modeling – SimPowerSystems & SimMechanics
 8.1 SimPowerSystems 252
 8.1.1 How the SimPowerSystems Blockset Works – Modeling a Nonlinear
 Resistor ... 256
 8.1.2 Using the Nonlinear Resistor Block 259
 8.2 Modeling an Electric Train Moving on a Rail 262
 8.3 SimMechanics – A Tool for Modeling Mechanical Linkages and Mechanical
 Systems .. 266
 8.3.1 Modeling a Pendulum with SimMechanics 268
 8.3.2 Modeling the Clock – Simulink and SimMechanics Together 271
 8.4 More Complex Models in SimMechanics and SimPowerSystems 272
 8.5 Further Reading .. 277

9 Putting Everything Together; Using Simulink in a System Design Process
 9.1 Specifications Development and Capture 280
 9.1.1 Modeling and Analysis – Converting the Specifications into an “Ex-
 ecutable Specification” 281
 9.2 Modeling the System to Incorporate the Specifications – Lunar Module
 Rotation Using Time Optimal Control 282
 9.2.1 From Specification to Control Algorithm 283
 9.3 Design of System Components to Meet Specifications – Modify the Design
 to Accommodate Computer Limitations 287
 9.3.1 Final LM Control System Executable Specification 289
 9.3.2 The Control System Logic – Using Stateflow 293
 9.4 Verification and Validation of the Design 296
 9.5 The Final Step – Creating Embedded Code 296
 9.6 Further Reading .. 298

10 Conclusion – Thoughts about Broad Based Knowledge 299

Bibliography .. 301

Index .. 305