
Chapter 8

Poisson Summation, Sampling and
Nyquist’s Theorem

See: A.6.1, A.5.2.

In Chapters 4 through 7, we developed the mathematical tools needed to describe func-
tions of continuous variables and methods to analyze and reconstruct them. This chapter
continues the transition from the world of pure mathematics to its application to problems
in image reconstruction. In the first sections of this chapter, we imagine that our “image”
is a function, f, of a single real variable, x . In a purely mathematical context, x is a real
number that can assume any value along a continuum of numbers. The function also takes
values in a continuum, either in �,�, or perhaps �n. In practical applications we can only
evaluate f at a finite set of points {x j }. This is called sampling. As most of the processing
takes place in digital computers, both the points {x j } and the measured values { f (x j )} are
forced to lie in the preassigned, finite set of numbers known to the computer. This is called
quantization. The reader is urged to review Section A.1, where these ideas are discussed in
some detail.

Except for a brief discussion of quantization, this chapter is about the consequences of
sampling. We examine the fundamental question: How much information about a function
is contained in a finite or infinite set of samples? Central to this analysis is the Poisson
summation formula. This formula is a bridge between the Fourier transform and the Fourier
series. While the Fourier transform is well suited to an abstract analysis of image or signal
processing, it is the Fourier series that is actually used to do the work. The reason is
quite simple: The Fourier transform and its inverse require integrals over the entire real
line, whereas the Fourier series is phrased in terms of infinite sums and integrals over
finite intervals, both of which are eventually approximated by finite sums. Indeed, we
also introduce the finite Fourier transform, an analogue of the Fourier transform for finite
sequences. This chapter covers the next step from the abstract world of the infinite and the
infinitesimal to the real world of the finite and discrete.
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278 Chapter 8. Sampling

8.1 Sampling and Nyquist’s Theorem�

See: A.5.2, B.1.

Recall that our basic model for a measurement is the evaluation of a function at a point.
A set of points {x j } contained in an interval (a, b) is discrete if no subsequence converges
to a point in (a, b). Evaluating a function on a discrete set of points is called sampling.
Practically speaking, a function can only be evaluated at points where it is continuous.
From the perspective of measurement, the value of a function at points of discontinuity is
not well defined.

Definition 8.1.1. Suppose that f is a function defined in an interval (a, b) and {x j } is a
discrete set of points in (a, b). The points {x j } are called the sample points. The values
{ f (x j )} are called the samples of f at the points {x j }.

In most applications the discrete set is of the form {x0 + j l | j ∈ �}, where l is a
fixed positive number. These are called equally spaced samples; the number l is called the
sample spacing. The reciprocal l−1 of l is called the sampling rate. Sampling theory studies
the problem of reconstructing functions of a continuous variable from a set of samples and
the relationship between these reconstructions and the idealized data.

8.1.1 Bandlimited Functions and Nyquist’s Theorem

A model for measurement, more realistic than pointwise evaluation, is the evaluation of a
convolution f ∗ ϕ. Here ϕ is an L1 weight function that models the measuring apparatus.
For most reasonable choices of weight function, f ∗ϕ is a continuous function, so its value
is well defined (from the point of view of measurement) at all x . As the Fourier transform
of f ∗ ϕ is f̂ ϕ̂, the Riemann-Lebesgue lemma, Theorem 4.2.2, implies that ϕ̂ tends to
zero as |ξ | tends to infinity. This means that the measuring apparatus attenuates the high-
frequency information in f. In applications we often make the assumption that there is “no
high-frequency information” or that is has been filtered out.

Definition 8.1.2. Let f be a function defined on �. If its Fourier transform, f̂ , is supported
in a finite interval, then f is a bandlimited function. If f̂ is supported in [−L , L], then f
is an L-bandlimited function.

Definition 8.1.3. Let f be a function defined on �. If its Fourier transform, f̂ , is supported
in a finite interval, then f is said to have finite bandwidth. If f̂ is supported in an interval
of length W, then f is said to have bandwidth W.

A bandlimited function is always infinitely differentiable. If f is either L1 or L2, then
f̂ is in L1 and the Fourier inversion formula states that

f (x) = 1

2π

∫ L

−L
f̂ (ξ)eixξdξ. (8.1)
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8.1. Sampling and Nyquist’s Theorem� 279

As the integrand is supported in a finite interval, the integral in (8.1) can be differentiated
as many times as we like. This, in turn, shows that f is infinitely differentiable. If f is in
L2, then so are all of its derivatives.

Nyquist’s theorem states that a bandlimited function is determined by a set of uniformly
spaced samples, provided that the sample spacing is sufficiently small.

Theorem 8.1.1 (Nyquist’s theorem). If f is a square integrable function and

f̂ (ξ) = 0 for |ξ | > L ,

then f is determined by the samples { f (πn
L ) : n ∈ �}.

Remark 8.1.1. As the proof shows, f is determined by any collection of uniformly spaced
samples with sample spacing πn

L , i.e.{ f (x0 + πn
L )} for any x0 ∈ �.

Proof. If we think of f̂ as a function defined on the interval [−L, L], then it follows from (8.1) that
the numbers {2π f (πn

L )} are the Fourier coefficients of f̂ . The inversion formula for Fourier series
then applies to give

f̂ (ξ) =
(π

L

)
LIM
N→∞

[
N∑

n=−N

f (
nπ

L
)e−

nπ iξ
L

]
if |ξ | < L . (8.2)

For the remainder of the proof we use the notation

(π
L

) ∞∑
n=−∞

f (
nπ

L
)e−

nπ iξ
L

to denote this LIM. The function defined by this infinite sum is periodic of period 2L; we can use it

to express f̂ (ξ) in the form

f̂ (ξ) =
(π

L

)[ ∞∑
n=−∞

f (
nπ

L
)e−

nπ iξ
L

]
χ[−L ,L](ξ). (8.3)

This proves Nyquist’s theorem, for a function in L2(�) is determined by its Fourier transform.

The exponentials e±i Lx have period 2π
L and frequency L

2π . If a function is L-bandlimited,
then L

2π is the highest frequency appearing in its Fourier representation. Nyquist’s theorem
states that we must sample such a function at the rate L

π
; that is, at twice its highest fre-

quency. As we shall see, sampling at a lower rate does not provide enough information to
completely determine f.

Definition 8.1.4. The optimal sampling rate for an L-bandlimited function, L
π
, is called the

Nyquist rate. Sampling at a lower rate is called undersampling, and sampling at a higher
rate is called oversampling.
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280 Chapter 8. Sampling

If this were as far as we could go, Nyquist’s theorem would be an interesting result
of little practical use. However, the original function f can be explicitly reconstructed
using (8.3) in the Fourier inversion formula. To justify our manipulations, we assume that
f tends to zero rapidly enough so that

∞∑
n−∞

| f (
nπ

L
)| < ∞. (8.4)

With this understood, we use (8.3) in (8.1) to obtain

f (x) = 1

2π

∫ ∞

−∞
χ[−L ,L](ξ) f̂ (ξ)eiξ x dξ

= 1

2π

π

L

∫ L

−L

∞∑
n=−∞

f (
nπ

L
)eixξ− nπ iξ

L dξ

= 1

2L

∞∑
n=−∞

f (
nπ

L
)

∫ L

−L
eixξ− nπ iξ

L dξ

=
∞∑

n=−∞
f (

nπ

L
) sinc(Lx − nπ).

This formula expresses the value of f, for every x ∈ �, in terms of the samples { f ( nπ
L ) :

n ∈ �} :
f (x) =

∞∑
n=−∞

f (
nπ

L
) sinc(Lx − nπ). (8.5)

Remark 8.1.2. If f belongs to L2(�), then f̂ is also square integrable. This, in turn,
implies that

∑∞
−∞ | f (L−1nπ)|2 is finite. Using the Cauchy-Schwarz inequality for l2,

we easily show that the sum on the right-hand side of (8.5) converges locally uniformly.
The Fourier transform of a bandlimited function is absolutely integrable. The Riemann-
Lebesgue lemma therefore implies that a bandlimited function is bounded and tends to
zero as |x| goes to infinity. Indeed, a bounded, integrable function is also square integrable.
Note, however, that a square-integrable, bandlimited function need not be absolutely inte-
grable.

Exercises
Exercise 8.1.1. Suppose that f is an L-bandlimited function. Show that it is determined
by the set of samples { f (x0 + πn

L ) : n ∈ �}, for any x0 ∈ �.

Exercise 8.1.2. Explain why, after possible modification on a set of measure zero, a band-
limited L2-function is given by (8.1).

Exercise 8.1.3. Show that a bounded integrable function defined on � is also square inte-
grable.
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8.1. Sampling and Nyquist’s Theorem� 281

Exercise 8.1.4. Give an example of a bandlimited function in L2(�) that is not absolutely
integrable.

Exercise 8.1.5. Suppose that f is a bandlimited function in L2(�). Show that the infinite
sum in (8.5) converges locally uniformly.

8.1.2 Shannon-Whittaker Interpolation

See: A.5.2.

The explicit interpolation formula, (8.5), for f in terms of its samples at { nπ
L | n ∈ �}

is sometimes called the Shannon-Whittaker interpolation formula. In Section A.5.2 we
consider other methods for interpolating a function from sampled values. These formulæ
involve finite sums and only give exact reconstructions for a finite-dimensional family
of functions. The Shannon-Whittaker formula gives an exact reconstruction for all L-
bandlimited functions. Since it requires an infinite sum, it is mostly of theoretical sig-
nificance. In practical applications only a finite part of this sum can be used. That is, we
would set

f (x) ≈
N∑

n=−N

f (
nπ

L
) sinc(Lx − nπ).

Because

sinc(Lx − nπ) � 1

n

and
∑

n−1 = ∞, the partial sums of the series in (8.5) may converge to f (x) very slowly.
In order to get a good approximation to f (x), we would therefore need to take N very
large. This difficulty can be often be avoided by oversampling.

Formula (8.5) is only one of an infinite family of similar interpolation formulæ . Sup-
pose that f is an (L−η)-bandlimited function for an η > 0. Then it is also an L-bandlimited
function. This makes it possible to use oversampling to obtain more rapidly convergent in-
terpolation formulæ . To find such formulæ select a function ϕ such that

1. ϕ̂(ξ ) = 1 for |ξ | ≤ L − η

2. ϕ̂(ξ ) = 0 for |ξ | > L

A function of this sort is often called a window function.
From (8.2) it follows that

f̂ (ξ) =
(π

L

) ∞∑
n=−∞

f (
πn

L
)e− nπ iξ

L for |ξ | < L . (8.6)

Since f̂ is supported in [η − L , L − η] and ϕ̂ satisfies condition (1), it follows that

f̂ (ξ) = f̂ (ξ)ϕ̂(ξ).
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282 Chapter 8. Sampling

Using this observation and (8.2) in the Fourier inversion formula gives

f (x) = 1

2π

∫ ∞

−∞
f̂ (ξ)ϕ̂(ξ)eiξ x dξ

= 1

2π

π

L

∞∑
n=−∞

f (
nπ

L
)

∫ L

−L
ϕ̂(ξ )eixξ− nπ iξ

L dξ

= 1

2L

∞∑
n=−∞

f (
nπ

L
)ϕ(x − nπ

L
).

(8.7)

This is a different interpolation formula for f ; the sinc-function is replaced by [2L]−1ϕ.
The Shannon-Whittaker formula, (8.5), corresponds to the choice ϕ̂ = χ[−L ,L].

Recall that more smoothness in the Fourier transform of a function is reflected in faster
decay of the function itself. Using a smoother function for ϕ̂ therefore leads to a more
rapidly convergent interpolation formula for f. There is a small price to pay for using a
different choice of ϕ̂. The first issue is that ϕ, given by

ϕ(x) = 1

2π

∫ ∞

−∞
ϕ̂(ξ )eixξdξ,

may be more difficult to accurately compute than the sinc function. The second is that we
need to sample f above the Nyquist rate. In this calculation, f is an (L − η)-bandlimited
function, but we need to use a sample spacing

π

L
<

π

L − η
.

On the other hand, a little oversampling and additional computational overhead often leads
to superior results.

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Fourier space.
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(b) The corresponding interpo-
lation functions.

Figure 8.1. Window functions in Fourier space and their inverse Fourier transforms.
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8.1. Sampling and Nyquist’s Theorem� 283

Example 8.1.1. We compare the Shannon-Whittaker interpolant to the interpolant obtained
using a second order smoothed window, with 25% oversampling. The second-order win-
dow is defined by

s2(ξ) =

⎧⎪⎨⎪⎩
1 if |ξ | ≤ 1,

128|ξ |3 − 432|ξ |2 + 480|ξ | − 175 if 1 < |ξ | < 5
4 ,

0 if |ξ | ≥ 5
4 .

(8.8)

It has one continuous derivative and a weak second derivative, its inverse Fourier transform
is


−1(s2)(x) = 768

[
cos(x) − cos(5x/4)

πx4

]
− 96

[
sin(5x/4) + sin(x)

πx3

]
.

Figure 8.1(a) shows the two window functions, and Figure 8.1(b) shows their inverse
Fourier transforms. Observe that 
−1(s2) converges to zero as x tends infinity much faster
than the sinc function.

The graphs in Figure 8.2 compare the results of reconstructing non-bandlimited func-
tions using the Shannon-Whittaker interpolant and that obtained using (8.7) with ϕ̂ a suit-
ably scaled version of s2. The sample spacing for the Shannon-Whittaker interpolation is
.1, for the “oversampled” case we use .08. The original function is shown in the first col-
umn; the second column shows both interpolants; and the third column is a detailed view
near to ±1. This is a point where the original function or one of its derivatives is discon-
tinuous. Two things are evident in these graphs: The error in the oversampled interpolant
tends to zero much faster as x tends to infinity, and the smoother the function, the easier it
is to interpolate.

Exercises
Exercise 8.1.6. Use the Shannon-Whittaker formula to reconstruct the function

f (x) = sin(Lx)

πx

from the samples { f ( nπ
L )}.

Exercise 8.1.7. How should the Shannon-Whittaker formula be modified if, instead of
{ f (πn

L ) : n ∈ �}, the samples { f (x0 + πn
L ) : n ∈ �} are collected?

Exercise 8.1.8. Show that for each n ∈ �, function, sinc(Lx − nπ) is L-bandlimited.
The Shannon-Whittaker formula therefore expresses an L-bandlimited function as a sum
of such functions.

Exercise 8.1.9. The Fourier transform of

f (x) = 1 − cos(x)

2πx

is f̂ (ξ) = i sgn ξχ[−1,1](ξ). Use the Shannon-Whittaker formula to reconstruct f from the
samples { f (nπ)}.
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284 Chapter 8. Sampling

(a) χ[−1,1]. (b) Its reconstructions. (c) Detail near the sin-
gularity.

(d) χ[−1,1](1 − x2). (e) Its reconstructions. (f) Detail near the sin-
gularity.

(g) χ[−1,1](1 − x2)2. (h) Its reconstructions. (i) Detail near the sin-
gularity.

Figure 8.2. Shannon-Whittaker and generalized Shannon-Whittaker interpolation for sev-
eral functions

8.2 The Poisson Summation Formula

What happens if we do not have enough samples to satisfy the hypotheses of Nyquist’s the-
orem? For example, what if our signal is not bandlimited? Functions that describe images
in medical applications generally have bounded support, so they cannot be bandlimited and
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8.2. The Poisson Summation Formula 285

therefore we are always undersampling (see Chapter 4, Proposition 4.4.1). To analyze the
effects of undersampling, we introduce the Poisson summation formula. It gives a relation-
ship between the Fourier transform and the Fourier series.

8.2.1 The Poisson Summation Formula

Assume that f is a continuous function that decays reasonably fast as |x| → ∞. We
construct a periodic function out of f by summing the values of f at its integer translates.
Define f p by

f p(x) =
∞∑

n=−∞
f (x + n). (8.9)

This is a periodic function of period 1, f p(x + 1) = f p(x). If f is absolutely integrable on
�, then it follows from Fubini’s theorem that f p is absolutely integrable on [0, 1].

The Fourier coefficients of f p are closely related to the Fourier transform of f :

f̂ p(m) =
∫ 1

0
f p(x)e

−2π imx dx

=
∫ 1

0

∞∑
n=−∞

f (x + n)e−2π imx dx =
∞∑

n=−∞

∫ n+1

n
f (x)e−2π imx dx

=
∫ ∞

−∞
f (x)e−2π imx dx = f̂ (2πm).

The interchange of the integral and summation is easily justified if f is absolutely inte-
grable on �.

Proceeding formally, we use the Fourier inversion formula for periodic functions, The-
orem 7.1.2, to find Fourier series representation for f p,

f p(x) =
∞∑

n=−∞
f̂ p(n)e

2π inx =
∞∑

n=−∞
f̂ (2πn)e2π inx .

Note that { f̂ p(n)} are the Fourier coefficients of the 1-periodic function f p whereas f̂ is
the Fourier transform of the absolutely integrable function f defined on all of �. To justify
these computations, it is necessary to assume that the coefficients { f̂ (2πn)} go to zero
sufficiently rapidly. If f is smooth enough, then this will be true. The Poisson summation
formula is a precise formulation of these observations.

Theorem 8.2.1 (Poisson summation formula). If f is an absolutely integrable function
such that

∞∑
n=−∞

| f̂ (2πn)| < ∞
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286 Chapter 8. Sampling

then, at points of continuity of f p, we have

∞∑
n=−∞

f (x + n) =
∞∑

n=−∞
f̂ (2πn)e2π inx . (8.10)

Remark 8.2.1. The hypotheses in the theorem are not quite optimal. Some hypotheses are
required, as there are examples of absolutely integrable functions f such that both sums,

∞∑
n=−∞

| f (x + n)| and
∞∑

n=−∞
| f̂ (2πn)|

converge but (8.10) does not hold. A more detailed discussion can be found in [79].

Using the preceding argument and rescaling, we easily find the Poisson summation
formula for 2L-periodic functions:

∞∑
n=−∞

f (x + 2nL) = 1

2L

∞∑
n=−∞

f̂ (
πn

L
)e

π inx
L . (8.11)

Suitably scaled, the hypotheses are the same as those in Theorem 8.2.1.
As an application of (8.10) we can prove an x-space version of Nyquist’s theorem.

Suppose that f equals 0 outside the interval [−L , L] (i.e., f is a space-limited function).
For each x ∈ [−L , L], only the n = 0 term on the left-hand side of (8.11) is nonzero. The
Poisson summation formula states that

f (x) = 1

2L

∞∑
n=−∞

f̂ (
πn

L
)e

π inx
L for x ∈ [−L , L].

Therefore, if f is supported in [−L , L], then it can be reconstructed from the samples of
its Fourier transform

{ f̂ (
πn

L
) | n ∈ �}.

This situation arises in magnetic resonance imaging (MRI). In this modality, we directly
measure samples of the Fourier transform of the image function. That is, we measure
{ f̂ (n�ξ)}. On the other hand, the function is known, a priori, to be supported in a fixed,
bounded set [−L , L]. In order to reconstruct f without introducing errors, we need to take

�ξ ≤ π

L
. (8.12)

Thus, if we measure samples of the Fourier transform of a space-limited function, then
Nyquist’s theorem places a constraint on the sample spacing in the Fourier domain. An
extensive discussion of sampling in MRI can be found in [50]. Figure 8.3 shows the result,
in MRI, of undersampling the Fourier transform. Note that portions of the original image
have been “folded over” at the top and right-hand side of the reconstructed image.
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Figure 8.3. Aliasing artifacts produced by undersampling in magnetic resonance imaging.
(Image courtesy of Dr. Felix Wehrli.)

It most applications we sample a function rather than its Fourier transform. The analysis
of undersampling in this situation requires the dual Poisson summation formula. Let f be
a function such that the sum ∞∑

−∞
f̂ (ξ + 2nL)

converges. Considering

f̂ p(ξ) =
∞∑
−∞

f̂ (ξ + 2nL)

and its Fourier coefficients in the same manner as previously we obtain the following:

Theorem 8.2.2 (The dual Poisson summation formula). If f is a function such that f̂ is
absolutely integrable and

∞∑
n=−∞

| f (
πn

L
)| < ∞

then, at a point of continuity of f̂ p,

∞∑
n=−∞

f̂ (ξ + 2nL) =
(π

L

) ∞∑
n=−∞

f (
πn

L
)e− nπ iξ

L . (8.13)

Exercises
Exercise 8.2.1. Give the details for the proof of Theorem 8.2.2. You may assume that f is
smooth and rapidly decreasing.

Exercise 8.2.2. Explain formula (8.12).
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Exercise 8.2.3.∗ This exercise requires a knowledge of the Fourier transform for general-
ized functions (see Section 4.4.4). Suppose that f is a periodic function of period 1. The
generalized function l f has a Fourier transform that is a generalized function. Using the
dual Poisson summation formula, show that

l̂ f = 2π
∞∑

n=−∞
f̂ (n)δ(2πn − ξ); (8.14)

here { f̂ (n)} are the Fourier coefficients defined in (7.1).

Exercise 8.2.4.∗ What is the analogue of formula (8.14) for a 2L-periodic function?

8.2.2 Undersampling and Aliasing�

Using the Poisson summation formula, we analyze the errors introduced by undersampling.
Whether or not f is an L-bandlimited function, the Shannon-Whittaker formula defines an
L-bandlimited function:

FL(x) =
∞∑

n=−∞
f (

nπ

L
) sinc(Lx − nπ).

As sinc(0) = 1 and sinc(nπ) = 0, for nonzero integers it follows that FL interpolates f at
the sample points,

FL(
nπ

L
) = f (

nπ

L
) for n ∈ �.

Reversing the steps in the derivation of the Shannon-Whittaker formula, and applying for-
mula (8.13) we see that Fourier transform of FL is given by

F̂L(ξ) =
∞∑

n=−∞
f̂ (ξ + 2nL)χ[−L ,L](ξ). (8.15)

If f is L-bandlimited then for all ξ, we have

f̂ (ξ) = F̂L(ξ).

On the other hand, if f is not L-bandlimited, then

f̂ (ξ)− F̂L(ξ) =
{

f̂ (ξ) if |ξ | > L ,

−∑n 	=0 f̂ (ξ + 2nL) if |ξ | ≤ L .
(8.16)

The function FL or its Fourier transform F̂L encodes all the information present in the
sequence of samples. Formula (8.16) shows that there are two distinct sources of error in
FL . The first is truncation error; as FL is L-bandlimited, the high-frequency information in
f is no longer available in FL . The second source of error arises from the fact that the high-
frequency information in f reappears at low frequencies in the function FL . This latter
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type of distortion is called aliasing. The high-frequency information in the original signal
is not simply “lost” but resurfaces, corrupting the low frequencies. Hence FL faithfully
reproduces neither the high-frequency nor the low-frequency information in f.

Aliasing is familiar in everyday life: If we observe the rotation of the wheels of a
fast-moving car in a movie, it appears that the wheels rotate very slowly. A movie image is
actually a sequence of samples (24 frames/second). This sampling rate is below the Nyquist
rate needed to accurately reproduce the motion of the rotating wheel.

Example 8.2.1. If a car is moving at 60 mph and the tires are 3 ft in diameter, then the
angular velocity of the wheels is

ω = 58
1

3

rotations

second
.

We can model the motion of a point on the wheel as (r cos((581
3 )2π t), r sin((581

3 )2π t).
The Nyquist rate is therefore

2 · 58
1

3

frames

second
� 117

frames

second
.

Sampling only 24 times per second leads to aliasing. As 581
3 = 101

3 + 2 ∗ 24, the aliased
frequencies are ±(101

3 ).

The previous example is useful to conceptualize the phenomenon of aliasing but has
little direct bearing on imaging. To better understand the role of aliasing in imaging we
rewrite FL in terms of its Fourier transform,

FL(x) = 1

2π

L∫
−L

f̂ (ξ)eixξdξ + 1

2π

L∫
−L

∑
n 	=0

f̂ (ξ + 2nL)eixξdξ.

The first term is the partial Fourier inverse of f. For a function with jump discontinuities
this term produces Gibbs oscillations. The second term is the aliasing error itself. In many
examples of interest in imaging, the Gibbs artifacts and the aliasing error are about the
same size. What makes either term a problem is slow decay of the Fourier transform of f.

0

0. 2

0. 4

0. 6

0. 8

1

0. 2 0 .4 0. 6 0 .8 1 1. 2

(a) Partial Fourier inverse.

−0. 1

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 2 0 .4 0. 6 0 .8 1 1. 2

(b) Pure aliasing contribution.

Figure 8.4. The two faces of aliasing, d = .05.
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290 Chapter 8. Sampling

Example 8.2.2. In Figure 8.4 the two contributions to f − FL are shown separately, for the
rectangle function f = χ[−1,1]. Figure 8.4(a) shows the Gibbs contribution; Figure 8.4(b)
shows the “pure aliasing” part. Figure 8.5 shows the original function, its partial Fourier
inverse, 
−1( f̂ χ[−L ,L]), and its Shannon-Whittaker interpolant. The partial Fourier inverse
is the medium weight line. The curve slightly to the right of this line is the Shannon-
Whittaker interpolant. In this example, the contributions of the Gibbs artifact and the pure
aliasing error are of about the same size and have same general character. It is evident that
the Shannon-Whittaker interpolant is more distorted than the partial inverse of the Fourier
transform, though visually they are quite similar.

0

0. 2

0. 4

0. 6

0. 8

1

0. 2 0 .4 0. 6 0 .8 1 1. 2

Figure 8.5. Partial Fourier inverse and Shannon-Whittaker interpolant.

Example 8.2.3. For comparison, consider the continuous function g(x) = χ[−1,1](x)(1 −
x2) and its reconstruction using the sample spacing d = .1. In Figure 8.6(a) it is just barely
possible to distinguish the original function from its approximate reconstruction. The worst
errors occur near the points ±1, where g is finitely differentiable. Figure 8.6(b) shows the
graph of the difference, g − GL (note the scale along the y-axis).

−0. 2

0. 2

0. 4

0. 6

0. 8

1

1. 2

−2 −1 1 2

(a) The Shannon-Whittaker interpola-
tion.

−0.01

0.01

−2 −1 1 2

(b) The difference.

Figure 8.6. What aliasing looks like for a continuous, piecewise differentiable function,
d = 0.1.

Example 8.2.4. As a final example we consider the effect of sampling on a “fuzzy func-
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8.2. The Poisson Summation Formula 291

tion.” Here we use a function of the sort introduced in Example4.2.5. These are continu-
ous functions with “sparse,” but slowly decaying, Fourier transforms. Figure 8.7(a) is the
graph of such a function, and Figure 8.7(b) shows the Shannon-Whittaker interpolants with
d = .1, .05, and .025. For a function of this sort, Shannon-Whittaker interpolation appears
to produce smoothing.

−0. 4

−0. 2

0

0. 2

0. 4

0. 6

0. 8

1

1 2

(a) A fuzzy function.

−0. 4

−0. 2
0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1 2

(b) Shannon-Whittaker interpolants.

Figure 8.7. What aliasing looks like for a fuzzy function, d = .1, .05, .025.

Remark 8.2.2.� The functions encountered in imaging applications are usually spatially
limited and therefore cannot be bandlimited. However, if a function f is smooth enough,
then its Fourier transform decays rapidly and therefore, by choosing L sufficiently large,
the difference, f̂ − F̂L can be made “small.” If this is so, then the effective support of
f̂ is contained in [−L , L], and f is an effectively bandlimited function. Though effec-
tive support is an important concept in imaging, it does not have a precise definition. In
most applications it does not suffice to have f̂ itself small outside of [−L , L]. Usually the
sampling rate must be large enough so that the aliasing error,∑

n 	=0

f̂ (ξ + 2nL),

is also small. This is a somewhat heuristic principle because the meaning of small is dic-
tated by the application.

Examples 8.2.2 and 8.2.3 illustrate what is meant by effective bandlimiting. Neither
function is actually bandlimited. No matter how large L is taken, a Shannon-Whittaker
interpolant for f, in Example 8.2.2, displays large oscillatory artifacts. In most applications
this function would not be considered effectively L-bandlimited, for any L . However, it
should be noted that, away from the jumps, the Shannon-Whittaker interpolant does a good
job reconstructing f. For most purposes, the function g would be considered effectively
bandlimited, though the precise effective bandwidth would depend on the application.

To diminish the effects of aliasing, an analogue signal may be passed through a “low-
pass filter” before it is sampled. In general terms, a lowpass filter is an operation that
attenuates the high-frequency content of a signal without introducing too much distortion
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292 Chapter 8. Sampling

into the low-frequency content. In this way the sampled data accurately represent the low-
frequency information present in the original signal without corruption from the high fre-
quencies. An ideal lowpass filter removes all the high-frequency content in a signal outside
of given band, leaving the data within the passband unchanged. An ideal lowpass filter
replaces f with the signal fL, defined by the following properties:

f̂ L(ξ) = f̂ (ξ) if |ξ | ≤ L ,

f̂ L(ξ) = 0 if |ξ | ≥ L .
(8.17)

The samples { fL(
nπ
L )} contain all the low frequency-information in f without the aliasing

errors. Using the Shannon-Whittaker formula to reconstruct a function, with these samples,
gives fL for all x . This function is just the partial Fourier inverse of f,

fL(x) = 1

2π

L∫
−L

f̂ (ξ)eixξdξ,

and is still subject to unpleasant artifacts like the Gibbs phenomenon.
A realistic measurement consists of samples of a convolution ϕ ∗ f, with ϕ a function

with total integral one. If it has support in [−η, η], then the measurement at nπ
L is the

average,

ϕ ∗ f (
nπ

L
) =

∫ η

−η

f (
nπ

L
− x)ϕ(x) dx .

Hence “measuring” the function f at x = nπ
L is the same thing as sampling the convolution

ϕ ∗ f at nπ
L . The Fourier transform of ϕ goes to zero as the frequency goes to infinity; the

smoother ϕ is, the faster this occurs. As the Fourier transform of ϕ ∗ f is

̂ϕ ∗ f (ξ) = ϕ̂(ξ ) f̂ (ξ),

the measurement process itself attenuates the high-frequency content of f. On the other
hand,

ϕ̂(0) =
∫ ∞

−∞
ϕ(x) dx = 1

and therefore ̂ϕ ∗ f resembles f̂ for sufficiently low frequencies. Most measurement pro-
cesses provide a form of lowpass filtering.

The more sharply peaked ϕ is, the larger the interval over which the “measurement
error,”

̂ϕ ∗ f (ξ)− f̂ (ξ) = (1 − ϕ̂(ξ )) f̂ (ξ)

can be controlled. The aliasing error in the measured samples is∑
n 	=0

ϕ̂(ξ + 2nL) f̂ (ξ + 2nL).

By choosing ϕ to be smooth, this can be made as small as we like. If ϕ is selected so that
ϕ̂(nL) = 0 for n ∈ � \ {0}, then the Gibbs-like artifacts that result from truncating the
Fourier transform to the interval [−L , L] can also be eliminated.
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8.2. The Poisson Summation Formula 293

Remark 8.2.3. A detailed introduction to wavelets that includes interesting generalizations
of the Poisson formula and the Shannon-Whittaker formula can be found in [58].

Exercises
Exercise 8.2.5. Derive formula (8.15) for F̂L .

Exercise 8.2.6. Compute the Fourier transform of g(x) = χ[−1,1](x)(1 − x2).

Exercise 8.2.7. What forward velocity of the car in Example8.2.1 corresponds to the ap-
parent rotational velocity of the wheels? What if the car is going 40 mph?

Exercise 8.2.8. Sometimes in a motion picture or television image the wheels of a car
appear to be going clockwise, even though the car is moving forward. Explain this by
giving an example.

Exercise 8.2.9. Explain why the artifact produced by aliasing looks like the Gibbs phe-
nomenon. For the function χ[−1,1], explain why the size of the pointwise error, in the
Shannon-Whittaker interpolant, does not go to zero as the sample spacing goes to zero.

Exercise 8.2.10. Experiment with the family of functions

fα(x) = χ[−1,1](x)(1 − x2)α

to understand effective bandlimiting. For a collection of α ∈ [0, 2], see whether there
is a Gibbs-like artifact in the Shannon-Whittaker interpolants and, if not, at what sample
spacing is the Shannon-Whittaker interpolant visually indistinguishable from the original
function (over [−2, 2]).
Exercise 8.2.11. The ideal lowpass filtered function, fL, can be expressed as a convolution

fL(x) = f ∗ kL(x).

Find the function kL . If the variable x is “time,” explain the difficulty in implementing an
ideal lowpass filter.

Exercise 8.2.12. Suppose that ϕ is a non-negative, even, real valued function such that
ϕ̂(0) = 1; explain why the interval over which | f̂ (ξ)− ̂ϕ ∗ f (ξ)| is small is controlled by

∞∫
−∞

x2ϕ(x) dx .

Exercise 8.2.13. Show that if

ψ(x) = ϕ ∗ χ[− π
L , πL ](x),

then ψ̂(nL) = 0 for all n ∈ � \ {0}.
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294 Chapter 8. Sampling

8.2.3 Subsampling

Subsampling is a way to take advantage of aliasing to “demodulate” a bandlimited signal
whose Fourier transform is supported in a set of the form [−ω−B,−ω+B] or [ω−B, ω+
B]. In this context ω is called the carrier frequency and 2B the bandwidth of the signal.
This situation arises in FM radio as well as in MR imaging. For simplicity, suppose that
there is a positive integer N so that

ω = N B.

Let f be a function whose Fourier transform is supported in [ω − B, ω + B]. If we
sample this function at the points { nπ

B , : n ∈ �} and use formula (8.5) to obtain FL,
then (8.13) implies that

F̂L(ξ) = f̂ (ω + ξ). (8.18)

The function FL is called the demodulated version of f ; the two signals are very simply
related:

f (x) = e−iωx FL(x).

From the formula relating f and FL, it is clear that if FL is real valued, then, in general,
the measured signal, f, is not. A similar analysis applies to a signal with Fourier transform
supported in [−ω − B,−ω + B].

Exercises
Exercise 8.2.14. Suppose that ω is not an integer multiple of B and that f is a signal whose
Fourier transform is supported in [ω−B, ω+B]. If FL is constructed as previously from the
samples { f ( nπ

B )}, then determine F̂L . What should be done to get a faithfully demodulated
signal by sampling? Keep in mind that normally ω >> B.

Exercise 8.2.15. Suppose that f is a real-valued function whose Fourier transform is sup-
ported in [−ω− B,−ω+ B] ∪ [ω− B, ω+ B]. Assuming that ω = N B and f is sampled
at { nπ

B }, how is F̂L related to f̂ ?

8.3 Periodic Functions and the Finite Fourier Transform�

See: 2.3.2.

We now adapt the discussion of sampling to the context of periodic functions. In this
case a natural finite analogue of the Fourier series plays a role analogous to that played,
in the study of sampling for functions defined on �, by the Fourier series itself. We begin
with the definition and basic properties of the finite Fourier transform.
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8.3. The Finite Fourier Transform� 295

Definition 8.3.1. Suppose that < x0, . . . , xm−1 > is a sequence of complex numbers. The
finite Fourier transform of this sequence is the sequence < x̂0, . . . , x̂m−1 > of complex
numbers defined by

x̂k = 1

m

m−1∑
j=0

x j e
− 2π i jk

m . (8.19)

Sometimes it is denoted by


m(< x0, . . . , xm−1 >) = (< x̂0, . . . , x̂m−1 >).

Using the formula for the sum of a geometric series and the periodicity of the exponen-
tial function, we easily obtain the formulæ

m−1∑
j=0

exp

(
2π i j

m
(k − l)

)
=
{

m k = l,

0 k 	= l.
(8.20)

These formulæ have a nice geometric interpretation: The set of vectors

{(1, e
2π ik

m , e
4π ik

m , . . . , e
2(m−1)π ik

m ) : k = 0, . . . ,m − 1}
is an orthogonal basis for �m . These vectors are obtained by sampling the functions
{e2π ikx : k = 0, . . . ,m − 1} at the points { j

m : j = 0, . . . ,m − 1}.
The computations in (8.20) show that the inverse of the finite Fourier transform is given

by

x j =
m−1∑
k=0

x̂ke
2π i jk

m . (8.21)

The formulæ (8.19) and (8.21) defining the sequences < x̂k > and < x j >, respectively,
make sense with k or j any integer. In much the same way, as it is often useful to think of
a function defined on [0, L] as an L-periodic functions, it is useful to think of < x j > and
< x̂k > as bi-infinite sequences satisfying

x j+m = x j and x̂k+m = x̂k . (8.22)

Such a sequence is called an m-periodic sequence.
The summation in (8.21) is quite similar to that in (8.19); the exponential multipliers

have been replaced by their complex conjugates. This means that a fast algorithm for
computing 
m automatically provides a fast algorithm for computing 
−1

m . Indeed, if m
is a power of 2, then there is a fast algorithm for computing both 
m and 
−1

m . Either
transformation requires about 3m log2 m computations, which should be compared to the
O(m2) computation generally required to multiply an m-vector by an m × m-matrix. This
algorithm, called the fast Fourier transform or FFT, is outlined in Section 10.5.

We now return to our discussion of sampling for periodic functions. Let f be an L-
periodic function with Fourier coefficients < f̂ (n) > .
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296 Chapter 8. Sampling

Definition 8.3.2. A periodic function f is called N -bandlimited if f̂ (n) = 0 for all n with
|n| ≥ N .

In this case, the inversion formula for Fourier series implies that

f (x) = 1

L

N−1∑
n=1−N

f̂ (n)e
2π inx

L .

This is a little simpler than the continuum case since f already lies in the finite-dimensional
space of functions spanned by

{e 2π inx
L : 1 − N ≤ n ≤ N − 1}.

Suppose that f is sampled at { j L
2N−1 : j = 0, . . . , 2N − 2}. Substituting the Fourier

representation of f into the sum defining the finite Fourier transform gives

2N−2∑
j=0

f (
j L

2N − 1
)e− 2π ik j

2N−1 =
2N−2∑

j=0

1

L

N−1∑
n=1−N

f̂ (n) exp

(
2π in j L

(2N − 1)L
− 2π ik j

2N − 1

)

= 1

L

N−1∑
n=1−N

f̂ (n)
2N−2∑

j=0

exp

(
2π i j

2N − 1
(n − k)

)
=2N − 1

L
f̂ (k), k ∈ {1 − N, 2 − N, . . . , N − 2, N − 1}.

(8.23)

The relations in (8.20), with m replaced by 2N − 1, are used to go from the second to
the third line. This computation shows that if f is an N -bandlimited function, then, but
for an overall multiplicative factor, the finite Fourier transform of the sequence of samples
< f (0), . . . , f ( (2N−2)L

2N−1 ) > computes the nonzero Fourier coefficients of f itself. From the

periodicity of 
2N−1(< f (0), . . . , f ( (2N−2)L
2N−1 ) >) it follows that


2N−1(< f (0), . . . , f (
(2N − 2)L

2N − 1
) >) =

< f̂ (0), f̂ (1), . . . , f̂ (N − 1), f̂ (1 − N), . . . , f̂ (−2), f̂ (−1) > .

(8.24)

The inversion formula for the finite Fourier transform implies the periodic analogue of
Nyquist’s theorem.

Theorem 8.3.1 (Nyquist’s theorem for periodic functions). If f is an L-periodic function
and f̂ (n) = 0 for |n| ≥ N, then f can be reconstructed from the equally spaced samples
{ f ( j L

2N−1 ) : j = 0, 1, . . . , (2N − 2)}.
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From equation (8.23) and the Fourier inversion formula, we derive an interpolation
formula analogous to (8.5):

f (x) = 1

L

N−1∑
n=1−N

f̂ (n)e
2π inx

L

= 1

L

N−1∑
n=1−N

L

2N − 1

2N−2∑
j=0

f (
j L

2N − 1
)e− 2π in j

2N−1 e
2π inx

L

= 1

2N − 1

2N−2∑
j=0

f (
j L

2N − 1
)

N−1∑
n=1−N

e− 2π in j
2N−1 e

2π inx
L

= 1

2N − 1

2N−2∑
j=0

f (
j L

2N − 1
)
sinπ(2N − 1)( x

L − j
2N−1 )

sinπ( x
L − j

2N−1 )

(8.25)

Even if f is not bandlimited, the last line in (8.25) defines an N -bandlimited function,

FN (x) = 1

2N − 1

2N−2∑
j=0

f (
j L

2N − 1
)
sin π(2N − 1)( x

L − j
2N−1 )

sinπ( x
L − j

2N−1 )
.

As before, this function interpolates f at the sample points

FN (
j L

2N − 1
) = f (

j L

2N − 1
), j = 0, 1, . . . , (2N − 2).

The Fourier coefficients of FN are related to those of f by

F̂N (k) =
∞∑

n=−∞
f̂ (k + n(2N − 1)) = f̂ (k)+

∑
n 	=0

f̂ (k + n(2N − 1)) 1− N ≤ k ≤ N − 1.

If f is not N -bandlimited, then FN has aliasing distortion: High-frequency data in f distort
the low frequencies in FN . Of course, if f is discontinuous, then FN also displays Gibbs
oscillations.

Exercises
Exercise 8.3.1. Prove (8.20). Remember to use the Hermitian inner product!

Exercise 8.3.2. Explain formula (8.24). What happens if f is not N -bandlimited?

Exercise 8.3.3.� As an m-periodic sequence, < x0, . . . , xm−1 > is even if

x j = xm− j for j = 1, . . . ,m

and odd if
x j = −xm− j for j = 1, . . . ,m.

Show that the finite Fourier transform of a real-valued, even sequence is real valued and the
finite Fourier transform of a real-valued, odd sequence is imaginary valued.
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Exercise 8.3.4. Suppose that f is an N -bandlimited, L-periodic function. For a subset
{x1, . . . , x2N−1} of [0, L) such that

x j 	= xk if j 	= k,

show that f can be reconstructed from the samples

{ f (x j ) : j = 1, . . . , 2N − 1}.
From the point of view of computation, explain why equally spaced samples are preferable.

Exercise 8.3.5. Prove that FN interpolates f at the sample points:

FN (
j L

2N − 1
) = f (

j L

2N − 1
), j = 0, 1, . . . , 2N − 2.

Exercise 8.3.6. Find analogues of the generalized Shannon-Whittaker formula in the peri-
odic case.

8.4 Quantization Errors

See: A.1.

In the foregoing sections it is implicitly assumed that we have a continuum of numbers
at our disposal to make measurements and do computations. As digital computers are used
to implement the various filters, this is not the case. In Section A.1.2 we briefly discuss
how numbers are actually stored and represented in a computer. For simplicity we consider
a base 2, fixed-point representation of numbers. Suppose that we have (n + 1) bits and let
the binary sequence (b0, b1, . . . , bn) correspond to the number

(b0, b1, . . . , bn) ↔ (−1)b0

∑n−1
j=0 b j+12 j

2n
. (8.26)

This allows us to represent numbers between −1 and +1 with a maximum error of 2−n.
There are several ways to map the continuum onto (n + 1)-bit binary sequences. Such a
correspondence is called a quantization map. In essentially any approach, numbers greater
than or equal to 1 are mapped to (0, 1, . . . , 1), and those less than or equal to −1 are
mapped to (1, 1, . . . , 1). This is called clipping and is very undesirable in applications. To
avoid clipping, the data are usually scaled before they are quantized.

The two principal quantization schemes are called rounding and truncation. For a num-
ber x between −1 and +1, its rounding is defined to be the number of the form in (8.26)
closest to x . If we denote this by Qr (x), then clearly

|Qr (x) − x| ≤ 1

2n+1
.
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There exist finitely many numbers that are equally close to two such numbers; for these
values a choice simply has to be made. If

x = (−1)b0

∑n−1
j=−∞ b j+12 j

2n
, where b j ∈ {0, 1},

then its (n + 1)-bit truncation corresponds to the binary sequence (b0, b1, . . . , bn). If we
denote this quantization map by Qt(x), then

0 ≤ x − Qt (x) ≤ 1

2n
.

We use the notation Q(x) to refer to either quantization scheme.
Not only are measurements quantized, but arithmetic operations are as well. The usual

arithmetic operations must be followed by a quantization step in order for the result of an
addition or multiplication to fit into the same number of bits. The machine uses

Q(Q(x) + Q(y)) and Q(Q(x) · Q(y))

for addition and multiplication, respectively. The details of these operations depend on
both the quantization scheme and the representation of numbers (i.e., fixed point or floating
point). We consider only the fixed point representation. If Q(x), Q(y) and Q(x) + Q(y)
all lie between −1 and +1, then no further truncation is needed to compute the sum. If
Q(x) + Q(y) is greater than +1, we have an overflow and if the sum is less than −1 an
underflow. In either case the value of the sum is clipped. On the other hand, if

Q(x) = (−1)b0

∑n−1
j=0 b j+12 j

2n
and Q(y) = (−1)c0

∑n−1
j=0 c j+12 j

2n
,

then

Q(x)Q(y) = (−1)b0+c0

∑n−1
j,k=1 b j+1ck+12 j+k

22n
.

This is essentially a (2n + 1)-bit binary representation and therefore must be re-quantized
to obtain an (n + 1)-bit representation. Because all numbers lie between +1 and −1,
overflows and underflows cannot occur in fixed-point multiplication.

It is not difficult to find numbers x and y between −1 and 1 so that x+y is also between
−1 and 1 but

Q(x + y) 	= Q(x) + Q(y).

This means that quantization is not a linear map!

Example 8.4.1. Using truncation as the quantization method and three binary bits, we see
that Q( 3

16) = 0 but Q( 3
16 + 3

16) = 1
4 .

Because it is nonlinear, quantization is difficult to analyze. An exact analysis requires
entirely new techniques. Another approach is to regard the error e(x) = x − Q(x) as quan-
tization noise. If {x j } is a sequence of samples, then {e j = x j − Q(x j )} is the quantization
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noise sequence. For this approach to be useful, we need to assume that the sequence {e j }
has good statistical properties (e.g., it is of mean zero and the successive values are not
highly correlated). If the original signal is sufficiently complex, then this is a good approx-
imation. However, if the original signal is too slowly varying, then these assumptions may
not hold. This approach is useful because it allows an analysis of the effect on the signal-
to-noise ratio of the number of bits used in the quantization scheme. It is beyond the scope
of this text to consider these problems in detail; a thorough treatment and references to the
literature can be found in Chapter 9 of [100].

8.5 Higher-Dimensional Sampling

In imaging applications, we usually work with functions of two or three variables. Let f be
a function defined on �n and let {xk} be a discrete set of points in �n. As before, the values
{ f (xk)} are the samples of f at the sample points {xk}. Parts of the theory of sampling
in higher dimensions exactly parallel the one-dimensional theory, though the problems of
sampling and reconstruction are considerably more complicated.

As in the one-dimensional case, samples are usually collected on a uniform grid. In this
case it is more convenient to label the sample points using vectors with integer coordinates.
As usual, boldface letters are used to denote such vectors, that is,

j = ( j1, . . . , jn), where ji ∈ �, i = 1, . . . , n.

Definition 8.5.1. The sample spacing for a set of uniformly spaced samples in �n is a
vector h = (h1, . . . , hn) with positive entries. The index j corresponds to the sample point

x j = ( j1h1, . . . , jnhn).

A set of values, { f (x j )}, at these points is a uniform sample set.

A somewhat more general definition of uniform sampling is sometimes useful: Fix n
orthogonal vectors {v1, . . . , vn}. For each j = ( j1, . . . , jn) ∈ �n, define the point

x j = j1v1 + · · · jnvn. (8.27)

The set of points {x j : j ∈ �n} defines a uniform sample set. This sample set is the result
of applying a rotation to a uniform sample set with sample spacing (‖v1‖, . . . , ‖vn‖). As in
the one-dimensional case, the definitions of sample spacing and uniform sampling depend
on the choice of coordinate system. A complication in several variables is that there are
many different coordinate systems that naturally arise.

Example 8.5.1. Let (h1, . . . , hn) be a vector with positive coordinates. The set of points

{( j1h1, . . . , jnhn) : ( j1, . . . , jn ∈ �n}
is a uniform sample set.
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Example 8.5.2. Let (r, θ) denote polar coordinates for �2; they are related to rectangular
coordinates by

x = r cos θ, y = r sin θ.

In CT imaging we often encounter functions that are uniformly sampled on a polar grid.
Let f (r, θ) be a function on �2 in terms of polar coordinates and let ρ > 0 and M ∈ � be
fixed. The set of values

{ f ( jρ,
2kπ

M
) : j ∈ �, k = 1, . . . M}

consists of uniform samples of f, in polar coordinates; however, the points

{( jρ cos

(
2kπ

M

)
, jρ sin

(
2kπ

M

)
)}

are not a uniform sample set as defined previously.

In more than one dimension there are many different, reasonable notions of finite band-
width, or bandlimited data. If D is any convex subset in �n containing 0, then a function is
D-bandlimited if f̂ is supported in D. The simplest such regions are boxes and balls.

Definition 8.5.2. Let B = (B1, . . . , Bn) be an n-tuple of positive numbers. A function f
defined in �n is B-bandlimited if

f̂ (ξ1, . . . , ξn) = 0 if |ξ j | > B j for j = 1, . . . , n. (8.28)

Definition 8.5.3. A function f defined in �n is R-bandlimited if

f̂ (ξ1, . . . , ξn) = 0 if ‖ξ‖ > R (8.29)

The Nyquist theorem and Shannon-Whittaker interpolation formula carry over easily
to B-bandlimited functions. However, these generalizations are often inadequate to handle
problems that arise in practice. The generalization of Nyquist’s theorem is as follows:

Theorem 8.5.1 (Higher-dimensional Nyquist theorem). Let B = (B1, . . . , Bn) be an n-
tuple of positive numbers. If f is a square-integrable function that is B-bandlimited, then
f can be reconstructed from the samples

{ f (
j1π

B1
, . . . ,

jnπ

Bn
) : ( j1, . . . , jn) ∈ �n}.

This result is “optimal.”

In order to apply this result to an R-bandlimited function, we would need to collect the
samples:

{ f (
j1π

R
, . . . ,

jnπ

R
) : ( j1, . . . , jm) ∈ �n}.

As f̂ is known to vanish in a large part of [−R, R]n, this would appear to be some sort of
oversampling.
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Neither Theorem 8.1.1 nor Theorem 8.5.1 say anything about nonuniform sampling. It
is less of an issue in one dimension. If the vectors, {v1, . . . , vn} are linearly independent
but not orthogonal, then formula (8.27) defines a set of sample points {x j }. Unfortunately,
Nyquist’s theorem is not directly applicable to decide whether or not the set of samples
{ f (x j ) : j ∈ �n} suffices to determine f. There are many results in the mathematics
literature that state that a function whose Fourier transform has certain support properties
is determined by its samples on appropriate subsets, though few results give an explicit
interpolation formula like (8.5). The interested reader is referred to [66] and [102].

The Poisson summation formula also has higher-dimensional generalizations. If f is a
rapidly decreasing function, then

f p(x) =
∑
j∈�n

f (x + j)

is a periodic function. The Fourier coefficients of f p are related to the Fourier transform of
f in much the same way as in one dimension:

f̂ p(k) =
∫

[0,1]n
f p(x)e

−2π i〈x,k〉dx

=
∫
�n

f (x)e−2π i〈x,k〉dx

= f̂ (2π i k).

(8.30)

Applying the Fourier series inversion formula with a function that is smooth enough and
decays rapidly enough shows that∑

j∈�n

f (x + j) =
∑
k∈�n

f̂ (2π i k)e2π i〈x,k〉. (8.31)

This is the n-dimensional Poisson summation formula.
The set of sample points is sometimes determined by the physical apparatus used to

make the measurements. As such, we often have samples { f (yk)}, of a function, on a non-
uniform grid { yk}. To use computationally efficient methods, it is often important to have
samples on a uniform grid {x j }. To that end, approximate values for f, at these points, are
obtained by interpolation. Most interpolation schemes involve averaging the known values
at nearby points. For example, suppose that { yk1

, . . . , ykl
} are the points in the nonuniform

grid closest to x j and there are numbers {λi}, all between 0 and 1, so that

x j =
l∑

i=1

λi yki
.

A reasonable way to assign a value to f at x j is to set

f (x j )
d=

l∑
i=1

λi f (yki
).
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This sort of averaging is not the result of convolution with an L1-function and does not pro-
duce smoothing. The success of such methods depends critically on the smoothness of f. A
somewhat more robust and efficient method for multi-variable interpolation is discussed in
Section 11.8. Another approach to nonuniform sampling is to find a computational scheme
adapted to the nonuniform grid. An example of this is presented in Section 11.5.

Exercises
Exercise 8.5.1. Prove Theorem 8.5.1.

Exercise 8.5.2. Find an n-dimensional generalization of the Shannon-Whittaker interpola-
tion formula (8.5).

Exercise 8.5.3. Give a definition of oversampling and a generalization of formula (8.7) for
the n-dimensional case.

Exercise 8.5.4. For a set of linearly independent vectors {v1, . . . , vn}, find a notion of V -
bandlimited so that a V -bandlimited function is determined by the samples { f (x j ) : j ∈
�n} where x j = j1v1 + · · · + jnvn. Show that your result is optimal.

Exercise 8.5.5. Using the results proved earlier about Fourier series, give hypotheses on
the smoothness and decay of f that are sufficient for (8.31) to be true.

8.6 Conclusion

Data acquired in medical imaging are usually described as samples of a function of contin-
uous variables. Nyquist’s theorem and the Poisson summation formula provide a precise
and quantitative description of the errors, known as aliasing errors, introduced by sampling.
The Shannon-Whittaker formula and its variants give practical methods for approximating
(or reconstructing) a function from a discrete set of samples. The finite Fourier transform,
introduced in Section 8.3, is the form in which Fourier analysis is finally employed in ap-
plications. In the next chapter we reinterpret (and rename) many of the results from earlier
chapters in the context and language of filtering theory. In Chapter 10, we analyze how the
finite Fourier transform provides an approximation to the both the Fourier transform and
Fourier series and use this analysis to approximately implement (continuum) shift invariant
filters on finitely sampled data. This constitutes the final step in the transition from abstract
continuum models to finite algorithms.
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