Contents

Preface xiii

I Preliminaries: Mathematical Modeling, Errors, Hardware, and Software 1

1 Errors and Arithmetic 5
 1.1 Sources of Error 5
 1.2 Computational Science and Scientific Computing 7
 1.3 Computer Arithmetic 8
 1.4 How Errors Propagate 14
 1.5 Mini Case Study: Avoiding Catastrophic Cancellation 15
 1.6 How Errors Are Measured 17
 1.7 Conditioning and Stability 20

2 Sensitivity Analysis: When a Little Means a Lot 23
 2.1 Sensitivity Is Measured by Derivatives 23
 2.2 Condition Numbers Give Bounds on Sensitivity 24
 2.3 Monte Carlo Experiments Can Estimate Sensitivity 27
 2.4 Confidence Intervals Give Insight into Sensitivity 28

3 Computer Memory and Arithmetic: 31
 A Look Under the Hood
 3.1 A Motivating Example 31
 3.2 Memory Management 32
 3.3 Determining Hardware Parameters 34
 3.4 Speed of Computer Arithmetic 36

4 Design of Computer Programs: 39
 Writing Your Legacy
 4.1 Documentation 39
 4.2 Software Design 41
 4.3 Validation and Debugging 42
 4.4 Efficiency 43
Contents

II Dense Matrix Computations

5 Matrix Factorizations 49

5.1 Basic Tools for Matrix Manipulation: The BLAS 50
5.2 The LU and Cholesky Decompositions 52
5.3 The QR Decomposition 57
5.3.1 QR Decomposition by Givens Rotations 58
5.3.2 QR by Gram–Schmidt Orthogonalization 60
5.3.3 Computing and Using the QR Decomposition 62
5.3.4 Mini Case Study: Least Squares Data Fitting 65
5.4 The Rank-Revealing QR Decomposition (RR-QR) 67
5.5 Eigendecomposition 68
5.5.1 Computing the Eigendecomposition 68
5.5.2 Mini Case Study: Stability Analysis of a Linear Control System 71
5.5.3 Other Uses for Eigendecompositions 72
5.6 The Singular Value Decomposition (SVD) 73
5.6.1 Computing and Using the SVD 73
5.6.2 Mini Case Study: Solving Ill-Conditioned and Rank-Deficient Least Squares Problems 74
5.7 Some Matrix Tasks to Avoid 76
5.8 Summary 78

6 Case Study: Image Deblurring: I Can See Clearly Now 81

(coauthored by James G. Nagy)

7 Case Study: Updating and Downdating Matrix Factorizations: A Change in Plans 87

8 Case Study: The Direction-of-Arrival Problem 97

III Optimization and Data Fitting

9 Numerical Methods for Unconstrained Optimization 105

9.1 Fundamentals for Unconstrained Optimization 109
9.1.1 How Do We Recognize a Solution? 110
9.1.2 Geometric Conditions for Optimality 112
9.1.3 The Basic Minimization Algorithm 113
9.2 The Model Method: Newton 114
9.2.1 How Well Does Newton’s Method Work? 116
9.2.2 Making Newton’s Method Safe: Modified Newton Methods 117
9.3 Descent Directions and Backtracking Linesearches 119
9.4 Trust Regions 121
9.5 Alternatives to Newton’s Method 122
9.5.1 Methods that Require Only First Derivatives 123
9.5.2 Low-Storage First-Derivative Methods 126
9.5.3 Methods that Require No Derivatives 129
9.6 Summary 131
Contents

10 Numerical Methods for Constrained Optimization 135
 10.1 Fundamentals for Constrained Optimization 135
 10.1.1 Optimality Conditions for Linear Constraints 136
 10.1.2 Optimality Conditions for the General Case 138
 10.2 Solving Problems with Bound Constraints 139
 10.3 Solving Problems with Linear Equality Constraints: Feasible Directions 140
 10.4 Barrier and Penalty Methods for General Constraints 141
 10.5 Interior-Point Methods 144
 10.6 Summary 147

11 Case Study: Classified Information: The Data Clustering Problem (coauthored by Nargess Memarsadeghi) 149

12 Case Study: Achieving a Common Viewpoint: Yaw, Pitch, and Roll (coauthored by David A. Schug) 157

13 Case Study: Fitting Exponentials: An Interest in Rates 163

14 Case Study: Blind Deconvolution: Errors, Errors Everywhere 169

15 Case Study: Blind Deconvolution: A Matter of Norm 175

IV Monte Carlo Computations 183

16 Monte Carlo Principles 187
 16.1 Random Numbers and Their Generation 188
 16.2 Properties of Probability Distributions 190
 16.3 The World Is Normal 191
 16.4 Pseudorandom Numbers and Their Generation 192
 16.5 Mini Case Study: Testing Random Numbers 193

17 Case Study: Monte Carlo Minimization and Counting: One, Two, Too Many (coauthored by Isabel Beichl and Francis Sullivan) 195

18 Case Study: Multidimensional Integration: Partition and Conquer 203

19 Case Study: Models of Infection: Person to Person 213

V Ordinary Differential Equations 221

20 Solution of Ordinary Differential Equations 225
 20.1 Initial Value Problems for Ordinary Differential Equations 226
 20.1.1 Standard Form 226
 20.1.2 Solution Families and Stability 228
20.2 Methods for Solving IVPs for ODEs .. 232
 20.2.1 Euler’s Method, Stability, and Error .. 232
 20.2.2 Predictor-Corrector Methods ... 237
 20.2.3 The Adams Family ... 239
 20.2.4 Some Ingredients in Building a Practical ODE Solver 240
 20.2.5 Solving Stiff Problems ... 243
 20.2.6 An Alternative to Adams Formulas: Runge–Kutta 243

20.3 Hamiltonian Systems ... 245

20.4 Differential-Algebraic Equations ... 247
 20.4.1 Some Basics .. 248
 20.4.2 Numerical Methods for DAES ... 249

20.5 Boundary Value Problems for ODEs ... 250
 20.5.1 Shooting Methods ... 253
 20.5.2 Finite Difference Methods .. 254

20.6 Summary ... 256

21 Case Study: More Models of Infection: It’s Epidemic 259

22 Case Study: Robot Control: Swinging Like a Pendulum
(coauthored by Yalin E. Sagduyu) .. 265

23 Case Study: Finite Differences and Finite Elements
Getting to Know You ... 273

VI Nonlinear Equations and Continuation Methods .. 281

24 Nonlinear Systems .. 285
 24.1 The Problem .. 285
 24.2 Nonlinear Least Squares Problems ... 287
 24.3 Newton-like Methods .. 288
 24.3.1 Newton’s Method for Nonlinear Equations .. 288
 24.3.2 Alternatives to Newton’s Method .. 289
 24.4 Continuation Methods ... 291
 24.4.1 The Theory behind Continuation Methods ... 293
 24.4.2 Following the Solution Path .. 294

25 Case Study: Variable-Geometry Trusses .. 297

26 Case Study: Beetles, Cannibalism, and Chaos .. 301

VII Sparse Matrix Computations,
with Application to Partial Differential Equations ... 307

27 Solving Sparse Linear Systems
Taking the Direct Approach ... 311
 27.1 Storing and Factoring Sparse Matrices .. 311
 27.2 What Matrix Patterns Preserve Sparsity? ... 313
 27.3 Representing Sparsity Structure ... 314
27.4 Some Reordering Strategies for Sparse Symmetric Matrices........ 314
27.5 Reordering Strategies for Nonsymmetric Matrices................. 321

28 Iterative Methods for Linear Systems............................. 323
28.1 Stationary Iterative Methods (SIMs)............................... 324
28.2 From SIMs to Krylov Subspace Methods........................... 326
28.3 Preconditioning CG... 328
28.4 Krylov Methods for Symmetric Indefinite Matrices and for Normal Equations... 330
28.5 Krylov Methods for Nonsymmetric Matrices....................... 331
28.6 Computing Eigendecompositions and SVDs with Krylov Methods... 333

29 Case Study: Elastoplastic Torsion: Twist and Stress.................. 335

30 Case Study: Fast Solvers and Sylvester Equations
Both Sides Now... 341

31 Case Study: Eigenvalues: Valuable Principles......................... 347

32 Multigrid Methods: Managing Massive Meshes......................... 353

Bibliography... 361

Index... 373