CONTENTS

Preface xiii

1 Real Analysis and Theory of Functions: A Quick Review 1
 Introduction .. 1
 1.1 Sets ... 2
 1.2 Mappings 3
 1.3 The axiom of choice and Zorn’s lemma 5
 1.4 Construction of the sets \(\mathbb{R} \) and \(\mathbb{C} \) 8
 1.5 Cardinal numbers; finite and infinite sets 9
 1.6 Topological spaces 11
 1.7 Continuity in topological spaces 14
 1.8 Compactness in topological spaces 15
 1.9 Connectedness and simple-connectedness in topological spaces 16
 1.10 Metric spaces 18
 1.11 Continuity and uniform continuity in metric spaces 21
 1.12 Complete metric spaces 22
 1.13 Compactness in metric spaces 23
 1.14 The Lebesgue measure in \(\mathbb{R}^n \); measurable functions 25
 1.15 The Lebesgue integral in \(\mathbb{R}^n \); the basic theorems 28
 1.16 Change of variable in Lebesgue integrals in \(\mathbb{R}^n \) 33
 1.17 Volumes, areas, and lengths in \(\mathbb{R}^n \) 34
 1.18 The spaces \(C^m(\Omega) \) and \(C^m(\Omega) \); domains in \(\mathbb{R}^n \) 36

2 Normed Vector Spaces 43
 Introduction .. 43
 2.1 Vector spaces; Hamel bases; dimension of a vector space 44
 2.2 Normed vector spaces; first properties and examples; quotient spaces 47
 2.3 The space \(C(K; Y) \) with \(K \) compact; uniform convergence and local uniform convergence 53
 2.4 The spaces \(\ell^p \), \(1 \leq p \leq \infty \) 57
 2.5 The Lebesgue spaces \(L^p(\Omega), 1 \leq p \leq \infty \) 61
 2.6 Regularization and approximation in the spaces \(L^p(\Omega), 1 \leq p < \infty \) 68
 2.7 Compactness and finite-dimensional normed vector spaces; F. Riesz theorem 76
 2.8 Application of compactness in finite-dimensional normed vector spaces: The fundamental theorem of algebra 79
2.9 Continuous linear operators in normed vector spaces; the spaces $\mathcal{L}(X; Y)$, $\mathcal{L}(X)$, and X' ... 82
2.10 Compact linear operators in normed vector spaces .. 89
2.11 Continuous multilinear mappings in normed vector spaces; the space $\mathcal{L}_k(X_1, X_2, \ldots, X_k; Y)$... 91
2.12 Korovkin’s theorem .. 97
2.13 Application of Korovkin’s theorem to polynomial approximation; Bohman’s, Bernstein’s, and Weierstraß theorems 100
2.14 Application of Korovkin’s theorem to trigonometric polynomial approximation; Fejér’s theorem ... 104
2.15 The Stone–Weierstraß theorem .. 109
2.16 Convex sets .. 114
2.17 Convex functions .. 118

3 Banach Spaces 123
Introduction .. 123
3.1 Banach spaces; first properties .. 124
3.2 First examples of Banach spaces; the spaces $\mathcal{C}(K; Y)$ with K compact and Y complete, and $\mathcal{L}(X; Y)$ with Y complete 130
3.3 Integral of a continuous function of a real variable with values in a Banach space .. 133
3.4 Further examples of Banach spaces: the spaces ℓ^p and $L^p(\Omega)$, $1 \leq p < \infty$. 135
3.5 Dual of a normed vector space; first examples; F. Riesz representation theorem in $L^p(\Omega)$, $1 \leq p < \infty$ 138
3.6 Series in Banach spaces ... 148
3.7 Banach fixed point theorem .. 152
3.8 Application of Banach fixed point theorem: Existence of solutions to nonlinear ordinary differential equations; Cauchy–Lipschitz theorem; the pendulum equation ... 156
3.9 Application of Banach fixed point theorem: Existence of solutions to nonlinear two-point boundary value problems ... 161
3.10 Ascoli–Arzelà’s theorem ... 164
3.11 Application of Ascoli–Arzelà’s theorem: Existence of solutions to nonlinear ordinary differential equations; Cauchy–Peano theorem; Euler’s method ... 169

4 Inner-Product Spaces and Hilbert Spaces 173
Introduction .. 173
4.1 Inner-product spaces and Hilbert spaces; first properties; Cauchy–Schwarz–Bunyakovskii inequality; parallelogram law ... 174
4.2 First examples of inner-product spaces and Hilbert spaces; the spaces ℓ^2 and $L^2(\Omega)$.. 181
4.3 The projection theorem ... 183
4.4 Application of the projection theorem: Least-squares solution of a linear system ... 193
4.5 Orthogonality; direct sum theorem .. 195
4.6 F. Riesz representation theorem in a Hilbert space .. 197
4.7 First applications of the F. Riesz representation theorem: Hahn–Banach theorem in a Hilbert space; adjoint operators; reproducing kernels 199
4.8 Maximal orthonormal families in an inner-product space 205
4.9 Hilbert bases and Fourier series in a Hilbert space .. 213
4.10 Eigenvalues and eigenvectors of self-adjoint operators in inner-product spaces .. 219
4.11 The spectral theorem for compact self-adjoint operators 221

5 The “Great Theorems” of Linear Functional Analysis .. 231
5.1 Baire’s theorem; a first application: Noncompleteness of the space of all polynomials ... 232
5.2 Application of Baire’s theorem: Existence of nowhere differentiable continuous functions .. 236
5.3 Banach–Steinhaus theorem, alias the uniform boundedness principle; application to numerical quadrature formulas 238
5.4 Application of the Banach–Steinhaus theorem: Divergence of Lagrange interpolation ... 245
5.5 Application of the Banach–Steinhaus theorem: Divergence of Fourier series .. 252
5.6 Banach open mapping theorem; a first application: Well-posedness of two-point boundary value problems ... 255
5.7 Banach closed graph theorem; a first application: Hellinger–Toeplitz theorem 259
5.8 The Hahn–Banach theorem in a vector space ... 261
5.9 The Hahn–Banach theorem in a normed vector space; first consequences ... 264
5.10 Geometric forms of the Hahn–Banach theorem; separation of convex sets 272
5.11 Dual operators; Banach closed range theorem .. 277
5.12 Weak convergence and weak * convergence ... 286
5.13 Banach–Saks–Mazur theorem .. 294
5.14 Reflexive spaces; the Banach–Eberlein–Šmulian theorem 297

6 Linear Partial Differential Equations ... 305
6.1 Quadratic minimization problems; variational equations and variational inequalities ... 306
6.2 The Lax–Milgram lemma ... 310
6.3 Weak partial derivatives in $L^1_{\text{loc}}(\Omega)$; a brief incursion into distribution theory .. 312
6.4 Hypoellipticity of Δ .. 319
6.5 The Sobolev spaces $W^{m,p}(\Omega)$ and $H^m(\Omega)$: First properties 326
6.6 The Sobolev spaces $W^{m,p}(\Omega)$ and $H^m(\Omega)$ with Ω a domain; imbedding theorems, traces, Green’s formulas ... 331
6.7 Examples of second-order linear elliptic boundary value problems; the membrane problem .. 338
6.8 Examples of fourth-order linear boundary value problems; the biharmonic and plate problems 355
6.9 Examples of nonlinear boundary value problems associated with variational inequalities; obstacle problems ... 363
6.10 Eigenvalue problems for second-order elliptic operators ... 369
6.11 The spaces $W^{-m,q}(\Omega)$ and $H^{-m}(\Omega)$; J.L. Lions lemma ... 377
6.12 The Babuška–Brezzi inf-sup theorem; application to constrained quadratic minimization problems ... 382
6.13 Application of the Babuška–Brezzi inf-sup theorem: Primal, mixed, and dual formulations of variational problems ... 388
6.14 Application of the Babuška–Brezzi inf-sup theorem and of J.L. Lions lemma: The Stokes equations ... 394
6.15 A second application of J.L. Lions lemma: Korn’s inequality ... 403
6.16 Application of Korn’s inequality: The equations of three-dimensional linearized elasticity ... 412
6.17 The classical Poincaré lemma and its weak version as an application of J.L. Lions lemma and of the hypoellipticity of Δ ... 419
6.18 Application of Poincaré’s lemma: The classical and weak Saint-Venant lemmas; the Cesàro–Volterra path integral formula ... 429
6.19 Another application of J.L. Lions lemma: The Donati lemmas ... 437
6.20 Pfaff systems ... 444

7 Differential Calculus in Normed Vector Spaces 451
7.1 The Fréchet derivative; the chain rule; the Piola identity; application to extrema of real-valued functions ... 452
7.2 The mean value theorem in a normed vector space; first applications ... 465
7.3 Application of the mean value theorem: Differentiability of the limit of a sequence of differentiable functions ... 469
7.4 Application of the mean value theorem: Differentiability of a function defined by an integral ... 472
7.5 Application of the mean value theorem: Sard’s theorem ... 474
7.6 A mean value theorem for functions of class C^1 with values in a Banach space ... 477
7.7 Newton’s method for solving nonlinear equations; the Newton–Kantorovich theorem in a Banach space ... 478
7.8 Higher order derivatives; Schwarz lemma ... 500
7.9 Taylor formulas; application to extrema of real-valued functions ... 507
7.10 Application: Maximum principle for second-order linear elliptic operators ... 513
7.11 Application: Lagrange interpolation in \mathbb{R}^n and multipoint Taylor formulas ... 522
7.12 Convex functions and differentiability; application to extrema of real-valued functions ... 540
7.13 The implicit function theorem; first application: Class C^∞ of the mapping $A \to A^{-1}$... 548
7.14 The local inversion theorem; the invariance of domain theorem for mappings of class C^1 in Banach spaces; class C^∞ of the mapping $A \to A^{1/2}$... 554
7.15 Constrained extrema of real-valued functions; Lagrange multipliers ... 560
7.16 Lagrangians and saddle-points; primal and dual problems ... 565
8 Differential Geometry in \mathbb{R}^n 575

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>575</td>
</tr>
<tr>
<td>8.1 Curvilinear coordinates in an open subset of \mathbb{R}^n</td>
<td>576</td>
</tr>
<tr>
<td>8.2 Metric tensor; volumes and lengths in curvilinear coordinates</td>
<td>578</td>
</tr>
<tr>
<td>8.3 Covariant derivative of a vector field</td>
<td>583</td>
</tr>
<tr>
<td>8.4 Tensors—a brief introduction</td>
<td>588</td>
</tr>
<tr>
<td>8.5 Necessary conditions satisfied by the metric tensor; the Riemann curvature tensor</td>
<td>595</td>
</tr>
<tr>
<td>8.6 Existence of an immersion on an open subset of \mathbb{R}^n with a prescribed metric tensor; the fundamental theorem of Riemannian geometry</td>
<td>598</td>
</tr>
<tr>
<td>8.7 Uniqueness up to isometries of immersions with the same metric tensor; the rigidity theorem for an open subset of \mathbb{R}^n</td>
<td>608</td>
</tr>
<tr>
<td>8.8 Curvilinear coordinates on a surface in \mathbb{R}^3</td>
<td>613</td>
</tr>
<tr>
<td>8.9 First fundamental form of a surface; areas, lengths, and angles on a surface</td>
<td>614</td>
</tr>
<tr>
<td>8.10 Isometric, equiareal, and conformal surfaces</td>
<td>622</td>
</tr>
<tr>
<td>8.11 Second fundamental form of a surface; curvature on a surface</td>
<td>624</td>
</tr>
<tr>
<td>8.12 Principal curvatures; Gaussian curvature</td>
<td>629</td>
</tr>
<tr>
<td>8.13 Covariant derivatives of a vector field defined on a surface; the Gauß and Weingarten formulas</td>
<td>636</td>
</tr>
<tr>
<td>8.14 Necessary conditions satisfied by the first and second fundamental forms: The Gauß and Codazzi–Mainardi equations</td>
<td>640</td>
</tr>
<tr>
<td>8.15 Gauß Theorema Egregium; application to cartography</td>
<td>643</td>
</tr>
<tr>
<td>8.16 Existence of a surface with prescribed first and second fundamental forms; the fundamental theorem of surface theory</td>
<td>646</td>
</tr>
<tr>
<td>8.17 Uniqueness of surfaces with the same fundamental forms; the rigidity theorem for surfaces</td>
<td>654</td>
</tr>
</tbody>
</table>

9 The “Great Theorems” of Nonlinear Functional Analysis 657

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>657</td>
</tr>
<tr>
<td>9.1 Nonlinear partial differential equations as the Euler–Lagrange equations associated with the minimization of a functional</td>
<td>658</td>
</tr>
<tr>
<td>9.2 Convex functions and sequentially lower semicontinuous functions with values in $\mathbb{R} \cup {\infty}$</td>
<td>664</td>
</tr>
<tr>
<td>9.3 Existence of minimizers for coercive and sequentially weakly lower semicontinuous functionals</td>
<td>671</td>
</tr>
<tr>
<td>9.4 Application to the von Kármán equations</td>
<td>674</td>
</tr>
<tr>
<td>9.5 Existence of minimizers in $W^{1,p}(\Omega)$</td>
<td>683</td>
</tr>
<tr>
<td>9.6 Application to the p-Laplace operator</td>
<td>691</td>
</tr>
<tr>
<td>9.7 Polyconvexity; compensated compactness; John Ball’s existence theorem in nonlinear elasticity</td>
<td>693</td>
</tr>
<tr>
<td>9.8 Ekeland’s variational principle; existence of minimizers for functionals that satisfy the Palais–Smale condition</td>
<td>711</td>
</tr>
<tr>
<td>9.9 Brouwer’s fixed point theorem—a first proof</td>
<td>718</td>
</tr>
<tr>
<td>9.10 Application of Brouwer’s theorem to the von Kármán equations, by means of the Galerkin method</td>
<td>726</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>9.11</td>
<td>Application of Brouwer’s theorem to the Navier–Stokes equations, by means of the Galerkin method</td>
</tr>
<tr>
<td>9.12</td>
<td>Schauder’s fixed point theorem; Schäfer’s fixed point theorem; Leray–Schauder fixed point theorem</td>
</tr>
<tr>
<td>9.13</td>
<td>Monotone operators</td>
</tr>
<tr>
<td>9.14</td>
<td>The Minty–Browder theorem for monotone operators; application to the p-Laplace operator</td>
</tr>
<tr>
<td>9.15</td>
<td>The Brouwer topological degree in \mathbb{R}^n: Definition and properties</td>
</tr>
<tr>
<td>9.16</td>
<td>Brouwer’s fixed point theorem—a second proof—and the hairy ball theorem</td>
</tr>
<tr>
<td>9.17</td>
<td>Borsuk’s and Borsuk–Ulam theorems; Brouwer’s invariance of domain theorem</td>
</tr>
</tbody>
</table>

Bibliographical Notes

Bibliography

Main Notations

Index