Monomial Form

A (real) polynomial p of degree n is a linear combination of the monomials $x \mapsto x^{k}, k=0, \ldots, n$:

$$
p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}
$$

with coefficients $c_{k} \in \mathbb{R}$ and $c_{n} \neq 0$. The coefficients correspond to the derivatives at $x=0$:

$$
k!c_{k}=p^{(k)}(0), \quad k=0, \ldots, n .
$$

The polynomials of degree $\leq n$ form a linear vector space of dimension $n+1$, denoted by \mathbb{P}^{n}. More precisely, we write $\mathbb{P}^{n}(D)$ if the variable x is restricted to a particular nondegenerate interval D.

