Lagrange Form of Interpolating Polynomials

Any values fi at n+ 1 distinct points x, can be interpolated uniquely by a

polynomial p of degree < n:

p(xk) =f, k=0,...,n.
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The Lagrange form of the interpolant is

p() =Y fea(x), alx) =[] —
k=0
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with Lagrange polynomials gk, which are equal to 1 at xx and vanish at all
other interpolation points xp, ¢ # k.
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Aitken-Neville Scheme

If p,’(”_1 interpolates f at distinct points xy,
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interpolates at x, ..., Xk+m-

ey Xktm—1, then
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Starting with p? = f(xx), we obtain interpolating polynomials of
successively higher degree with a triangular scheme:
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where the arrows — and 7 pointing to p;” indicate multiplication with
(I —wy") and w[", respectively.
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Starting with p? = f(xx), we obtain interpolating polynomials of
successively higher degree with a triangular scheme:
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where the arrows — and 7 pointing to p;” indicate multiplication with
(I — wy") and w[", respectively. The final polynomial pj has degree < n
and interpolates at xp, ..., Xp.

AMB Polynomials — Interpolation

1-5




	Polynomials

