Lagrange Form of Interpolating Polynomials

Any values f_k at n+1 distinct points x_k can be interpolated uniquely by a polynomial p of degree $\leq n$:

$$p(x_k) = f_k, \quad k = 0, \ldots, n.$$

The Lagrange form of the interpolant is

$$p(x) = \sum_{k=0}^{n} f_k q_k(x), \quad q_k(x) = \prod_{\ell \neq k} \frac{x - x_{\ell}}{x_k - x_{\ell}},$$

with Lagrange polynomials q_k , which are equal to 1 at x_k and vanish at all other interpolation points x_ℓ , $\ell \neq k$.

Aitken-Neville Scheme

If p_k^{m-1} interpolates f at distinct points x_k, \ldots, x_{k+m-1} , then

$$p_k^m = (1 - w_k^m)p_k^{m-1} + w_k^m p_{k+1}^{m-1}, \quad w_k^m(x) = \frac{x - x_k}{x_{k+m} - x_k},$$

interpolates at x_k, \ldots, x_{k+m} .

Starting with $p_k^0 = f(x_k)$, we obtain interpolating polynomials of successively higher degree with a triangular scheme:

where the arrows \to and \nearrow pointing to p_k^m indicate multiplication with $(1-w_k^m)$ and w_k^m , respectively.

Starting with $p_k^0 = f(x_k)$, we obtain interpolating polynomials of successively higher degree with a triangular scheme:

where the arrows \to and \nearrow pointing to p_k^m indicate multiplication with $(1-w_k^m)$ and w_k^m , respectively. The final polynomial p_0^n has degree $\le n$ and interpolates at x_0,\ldots,x_n .