Lagrange Form of Interpolating Polynomials

Any values f_{k} at $n+1$ distinct points x_{k} can be interpolated uniquely by a polynomial p of degree $\leq n$:

$$
p\left(x_{k}\right)=f_{k}, \quad k=0, \ldots, n .
$$

The Lagrange form of the interpolant is

$$
p(x)=\sum_{k=0}^{n} f_{k} q_{k}(x), \quad q_{k}(x)=\prod_{\ell \neq k} \frac{x-x_{\ell}}{x_{k}-x_{\ell}}
$$

with Lagrange polynomials q_{k}, which are equal to 1 at x_{k} and vanish at all other interpolation points $x_{\ell}, \ell \neq k$.

Aitken-Neville Scheme
If p_{k}^{m-1} interpolates f at distinct points x_{k}, \ldots, x_{k+m-1}, then

$$
p_{k}^{m}=\left(1-w_{k}^{m}\right) p_{k}^{m-1}+w_{k}^{m} p_{k+1}^{m-1}, \quad w_{k}^{m}(x)=\frac{x-x_{k}}{x_{k+m}-x_{k}}
$$

interpolates at x_{k}, \ldots, x_{k+m}.

Starting with $p_{k}^{0}=f\left(x_{k}\right)$, we obtain interpolating polynomials of successively higher degree with a triangular scheme:

\[

\]

where the arrows \rightarrow and \nearrow pointing to p_{k}^{m} indicate multiplication with $\left(1-w_{k}^{m}\right)$ and w_{k}^{m}, respectively.

Starting with $p_{k}^{0}=f\left(x_{k}\right)$, we obtain interpolating polynomials of successively higher degree with a triangular scheme:

\[

\]

where the arrows \rightarrow and \nearrow pointing to p_{k}^{m} indicate multiplication with $\left(1-w_{k}^{m}\right)$ and w_{k}^{m}, respectively. The final polynomial p_{0}^{n} has degree $\leq n$ and interpolates at x_{0}, \ldots, x_{n}.

