Bernstein Polynomials

The Bernstein polynomials of degree n are defined by

$$
b_{k}^{n}(x)=\binom{n}{k}(1-x)^{n-k} x^{k}, \quad k=0, \ldots, n .
$$

They form a basis for the space \mathbb{P}^{n} of polynomials of degree $\leq n$ which is symmetric with respect to the standard parameter interval $[0,1]$. In particular, for $j, k \in\{0, \ldots, n\}$,

$$
x^{j}=\sum_{k=j}^{n}\binom{k}{j} /\binom{n}{j} b_{k}^{n}(x), \quad b_{k}^{n}(x)=\sum_{j=0}^{n-k}(-1)^{j}\binom{n}{k}\binom{n-k}{j} x^{j+k},
$$

which describes the conversion between monomial and Bernstein form.

Bernstein Polynomials

The Bernstein polynomials of degree n are defined by

$$
b_{k}^{n}(x)=\binom{n}{k}(1-x)^{n-k} x^{k}, \quad k=0, \ldots, n .
$$

They form a basis for the space \mathbb{P}^{n} of polynomials of degree $\leq n$ which is symmetric with respect to the standard parameter interval $[0,1]$. In particular, for $j, k \in\{0, \ldots, n\}$,

$$
x^{j}=\sum_{k=j}^{n}\binom{k}{j} /\binom{n}{j} b_{k}^{n}(x), \quad b_{k}^{n}(x)=\sum_{j=0}^{n-k}(-1)^{j}\binom{n}{k}\binom{n-k}{j} x^{j+k},
$$

which describes the conversion between monomial and Bernstein form. In identities and recursions involving Bernstein polynomials it is often convenient to use indices $k \in \mathbb{Z}$ outside the range $\{0, \ldots, n\}$. For such k, $b_{k}^{n}(x)$ is set to zero, in agreement with a similar convention for binomial coefficients.

