Properties of Bernstein Polynomials

The Bernstein polynomials of degree n are nonnegative on the standard parameter interval $[0,1]$ and sum to one:

$$
\sum_{k=0}^{n} b_{k}^{n}(x)=1
$$

Moreover, b_{k}^{n} has a unique maximum at $x=\frac{k}{n}$ on $[0,1]$.

Properties of Bernstein Polynomials

The Bernstein polynomials of degree n are nonnegative on the standard parameter interval $[0,1]$ and sum to one:

$$
\sum_{k=0}^{n} b_{k}^{n}(x)=1
$$

Moreover, b_{k}^{n} has a unique maximum at $x=\frac{k}{n}$ on $[0,1]$. At the interval endpoints 0 and 1 , only the first and the last Bernstein polynomials are nonzero, respectively:

$$
\begin{aligned}
& b_{0}^{n}(0)=1, \quad b_{1}^{n}(0)=\cdots=b_{n}^{n}(0)=0 \\
& b_{0}^{n}(1)=\cdots=b_{n-1}^{n}(1)=0, \quad b_{n}^{n}(1)=1
\end{aligned}
$$

As a consequence, a polynomial in Bernstein form, $p=\sum_{k=0}^{n} c_{k} b_{k}^{n}$, is equal to c_{0} at $x=0$ and equal to c_{n} at $x=1$. This property is referred to as endpoint interpolation.

Identities for Bernstein Polynomials

The Bernstein polynomials $b_{k}^{n}, k=0, \ldots, n$, satisfy the following identities.
Symmetry:

$$
b_{k}^{n}(1-x)=b_{n-k}^{n}(x) .
$$

Identities for Bernstein Polynomials

The Bernstein polynomials $b_{k}^{n}, k=0, \ldots, n$, satisfy the following identities.
Symmetry:

$$
b_{k}^{n}(1-x)=b_{n-k}^{n}(x) .
$$

Recursion:

$$
b_{k}^{n}(x)=x b_{k-1}^{n-1}(x)+(1-x) b_{k}^{n-1}(x) .
$$

Identities for Bernstein Polynomials

The Bernstein polynomials $b_{k}^{n}, k=0, \ldots, n$, satisfy the following identities.
Symmetry:

$$
b_{k}^{n}(1-x)=b_{n-k}^{n}(x) .
$$

Recursion:

$$
b_{k}^{n}(x)=x b_{k-1}^{n-1}(x)+(1-x) b_{k}^{n-1}(x)
$$

Differentiation:

$$
\left(b_{k}^{n}\right)^{\prime}=n\left(b_{k-1}^{n-1}-b_{k}^{n-1}\right) .
$$

Identities for Bernstein Polynomials

The Bernstein polynomials $b_{k}^{n}, k=0, \ldots, n$, satisfy the following identities.
Symmetry:

$$
b_{k}^{n}(1-x)=b_{n-k}^{n}(x) .
$$

Recursion:

$$
b_{k}^{n}(x)=x b_{k-1}^{n-1}(x)+(1-x) b_{k}^{n-1}(x)
$$

Differentiation:

$$
\left(b_{k}^{n}\right)^{\prime}=n\left(b_{k-1}^{n-1}-b_{k}^{n-1}\right) .
$$

Integration:

$$
\int_{0}^{1} b_{k}^{n}=\frac{1}{n+1} .
$$

Identities for Bernstein Polynomials

The Bernstein polynomials $b_{k}^{n}, k=0, \ldots, n$, satisfy the following identities.
Symmetry:

$$
b_{k}^{n}(1-x)=b_{n-k}^{n}(x) .
$$

Recursion:

$$
b_{k}^{n}(x)=x b_{k-1}^{n-1}(x)+(1-x) b_{k}^{n-1}(x)
$$

Differentiation:

$$
\left(b_{k}^{n}\right)^{\prime}=n\left(b_{k-1}^{n-1}-b_{k}^{n-1}\right) .
$$

Integration:

$$
\int_{0}^{1} b_{k}^{n}=\frac{1}{n+1} .
$$

We note that $b_{-1}^{n-1}=b_{n}^{n-1}=0$ in the second and third identities, according to the standard convention.

