Hermite Interpolation

Values f_{0}, f_{1} and derivatives d_{0}, d_{1} at two points $x_{0}<x_{1}$ can be interpolated by a cubic polynomial p. This Hermite interpolant can be expressed as linear combination of Bernstein polynomials transformed to the interval $\left[x_{0}, x_{1}\right]$:

$$
p(x)=f_{0} b_{0}^{3}(y)+\left(f_{0}+d_{0} h / 3\right) b_{1}^{3}(y)+\left(f_{1}-d_{1} h / 3\right) b_{2}^{3}(y)+f_{1} b_{3}^{3}(y)
$$

with $h=x_{1}-x_{0}$ and $y=\left(x-x_{0}\right) / h$.

As illustrated in the figure, the Bernstein coefficients of the interpolant p form a polygon with equally spaced abscissae which touches p or, equivalently, the interpolated function at the interval endpoints. If Hermite data are given at more than two points, the cubic interpolants form a so-called Hermite spline q. By construction, q is uniquely determined by its values and derivatives at the interpolation points and continuously differentiable there.

