Algorithm of de Casteljau

A point

$$
p(t)=\sum_{k=0}^{n} c_{k} b_{k}^{n}(t), \quad t \in[0,1]
$$

on a Bézier curve can be determined by successively subdividing the edges of the control polygon in the ratio $t:(1-t)$.

As is apparent from the figure, the computations can be arranged in a triangular scheme. The point $p(t)$ is obtained in n steps, each forming convex combinations of adjacent control points:

$$
p_{k}^{m}=(1-t) p_{k}^{m-1}+t p_{k+1}^{m-1}
$$

with $p_{k}^{0}=c_{k}$ and $p_{0}^{n}=p(t)$.

