Curvature

The curvatures κ at the endpoints of a Bézier curve, parametrized by

$$
p=\sum_{k=0}^{n} c_{k} b_{k}^{n},
$$

have the following geometric interpretation. If $p^{\prime}(0) \neq 0 \neq p^{\prime}(1)$,

$$
\kappa(0)=\frac{2(n-1)}{n} \frac{\operatorname{area}\left[c_{0}, c_{1}, c_{2}\right]}{\left|c_{1}-c_{0}\right|^{3}}, \quad \kappa(1)=\frac{2(n-1)}{n} \frac{\operatorname{area}\left[c_{n}, c_{n-1}, c_{n-2}\right]}{\left|c_{n-1}-c_{n}\right|^{3}},
$$

where $\left[a_{0}, a_{1}, a_{2}\right]$ denotes the triangle formed by the points a_{k} and $|v|$ is the length of a vector v.

