Subdivision

A Bézier curve parametrized by

$$
p(t)=\sum_{k=0}^{n} c_{k} b_{k}^{n}(t), \quad 0 \leq t \leq 1
$$

can be split into two parts corresponding to the subintervals $[0, s]$ and [$s, 1]$ with the aid of de Casteljau's algorithm.

The first and last control points, p_{0}^{m} and p_{n-m}^{m}, generated with the m th de Casteljau step yield the control points of the left and right curve segments:

$$
\begin{aligned}
p^{\text {left }}(t)=p(s t) & =\sum_{m=0}^{n} p_{0}^{m} b_{m}^{n}(t) \\
p^{\text {right }}(t)=p(s+(1-s) t) & =\sum_{m=0}^{n} p_{m}^{n-m} b_{m}^{n}(t)
\end{aligned}
$$

Hence, the left and right control points correspond to the first and last diagonal of de Casteljau's scheme.

The first and last control points, p_{0}^{m} and p_{n-m}^{m}, generated with the m th de Casteljau step yield the control points of the left and right curve segments:

$$
\begin{aligned}
p^{\text {left }}(t)=p(s t) & =\sum_{m=0}^{n} p_{0}^{m} b_{m}^{n}(t) \\
p^{\text {right }}(t)=p(s+(1-s) t) & =\sum_{m=0}^{n} p_{m}^{n-m} b_{m}^{n}(t)
\end{aligned}
$$

Hence, the left and right control points correspond to the first and last diagonal of de Casteljau's scheme.

