Homogeneous Coordinates

The parametrization

$$
t \mapsto r(t)=\frac{\sum_{k=0}^{n}\left(c_{k} w_{k}\right) b_{k}^{n}(t)}{\sum_{k=0}^{n} w_{k} b_{k}^{n}(t)}, \quad 0 \leq t \leq 1
$$

of a rational Bézier curve can be identified with a polynomial parametrization

$$
\tilde{r}=(p \mid q)=\sum_{k}\left(c_{k} w_{k} \mid w_{k}\right) b_{k}^{n}
$$

in homogeneous coordinates, i.e., $r=\left(p_{1}, \ldots, p_{d}\right) / q$. This interpretation is convenient for implementing algorithms such as evaluation, differentiation, and subdivision. The procedures for polynomial Bézier curves are applied to \tilde{r}, and the result in \mathbb{R}^{d+1} is projected to \mathbb{R}^{d} by dividing by the last coordinate.

Differentation

The parametrization

$$
r=\frac{\sum_{k=0}^{n}\left(w_{k} c_{k}\right) b_{k}^{n}}{\sum_{k=0}^{n} w_{k} b_{k}^{n}}=\frac{p}{q}
$$

of a rational Bézier curve can be differentiated with the aid of Leibniz's rule:

$$
\left(\frac{d}{d t}\right)^{m}(r(t) q(t))=\sum_{\ell=0}^{m}\binom{m}{\ell} r^{(m-\ell)}(t) q^{(\ell)}(t)=p^{(m)}(t) .
$$

Differentation

The parametrization

$$
r=\frac{\sum_{k=0}^{n}\left(w_{k} c_{k}\right) b_{k}^{n}}{\sum_{k=0}^{n} w_{k} b_{k}^{n}}=\frac{p}{q}
$$

of a rational Bézier curve can be differentiated with the aid of Leibniz's rule:

$$
\left(\frac{d}{d t}\right)^{m}(r(t) q(t))=\sum_{\ell=0}^{m}\binom{m}{\ell} r^{(m-\ell)}(t) q^{(\ell)}(t)=p^{(m)}(t) .
$$

This identity yields a recursion for $r^{(m)}$ in terms of the lower order derivatives:

$$
\begin{aligned}
r^{\prime} & =\left(p^{\prime}-r q^{\prime}\right) / q \\
r^{\prime \prime} & =\left(p^{\prime \prime}-2 r^{\prime} q^{\prime}-r q^{\prime \prime}\right) / q \\
r^{\prime \prime \prime} & =\left(p^{\prime \prime \prime}-3 r^{\prime \prime} q^{\prime}-3 r^{\prime} q^{\prime \prime}-r q^{\prime \prime \prime}\right) / q
\end{aligned}
$$

For evaluating derivatives, we can therefore use the formulas and algorithms for standard Bézier curves. We simultaneously compute the derivatives of p and q and substitute the results into the recursion.

