Derivative of a B-Spline

The derivative of a B-spline of degree n with knots $\xi_{k}, \ldots, \xi_{k+n+1}$ is a weighted difference of two B -splines of degree $n-1$. On each knot interval $\left[\xi_{\ell}, \xi_{\ell+1}\right)$,

$$
\left(b_{k, \xi}^{n}\right)^{\prime}=\alpha_{k, \xi}^{n} b_{k, \xi}^{n-1}-\alpha_{k+1, \xi}^{n} b_{k+1, \xi}^{n-1}, \quad \alpha_{k, \xi}^{n}=\frac{n}{\xi_{k+n}-\xi_{k}}
$$

where terms with denominator zero are discarded.

It follows from the recursion that $b_{k, \xi}^{n}$ is $(n-\mu)$-times continuously differentiable at a knot ξ_{ℓ} if ξ_{ℓ} has multiplicity $\mu \leq n$ among $\xi_{k}, \ldots, \xi_{k+n+1}$. In particular, $b_{k, \xi}^{n}$ is continuous on \mathbb{R} unless one of its knots has multiplicity $n+1$.

Zeros of B-Splines

If ξ_{k} has multiplicity μ among the knots of $b_{k, \xi}^{n}$, then the left endpoint ξ_{k} of the B -spline support is a zero of order $n+1-\mu$:

$$
b_{k, \xi}^{n}(x)=\beta_{k}\left(x-\xi_{k}\right)^{n+1-\mu}+\mathcal{O}\left(\left(x-\xi_{k}\right)^{n+2-\mu}\right), \quad x \rightarrow \xi_{k}^{+}
$$

with $\beta_{k}>0$.
An analogous statement is valid for the right endpoint of the support of $b_{k, \xi}^{n}$.

