Derivative of a B-Spline

The derivative of a B-spline of degree n with knots $\xi_k, \ldots, \xi_{k+n+1}$ is a weighted difference of two B-splines of degree n-1. On each knot interval $[\xi_{\ell}, \xi_{\ell+1})$,

$$(b_{k,\xi}^n)' = \alpha_{k,\xi}^n b_{k,\xi}^{n-1} - \alpha_{k+1,\xi}^n b_{k+1,\xi}^{n-1}, \quad \alpha_{k,\xi}^n = \frac{n}{\xi_{k+n} - \xi_k},$$

where terms with denominator zero are discarded.

It follows from the recursion that $b_{k,\xi}^n$ is $(n - \mu)$ -times continuously differentiable at a knot ξ_ℓ if ξ_ℓ has multiplicity $\mu \le n$ among $\xi_k, \ldots, \xi_{k+n+1}$. In particular, $b_{k,\xi}^n$ is continuous on \mathbb{R} unless one of its knots has multiplicity n + 1.

Zeros of B-Splines

If ξ_k has multiplicity μ among the knots of $b_{k,\xi}^n$, then the left endpoint ξ_k of the B-spline support is a zero of order $n + 1 - \mu$:

$$b_{k,\xi}^n(x) = \beta_k (x - \xi_k)^{n+1-\mu} + \mathcal{O}\left((x - \xi_k)^{n+2-\mu} \right) , \quad x \to \xi_k^+ ,$$

with $\beta_k > 0$.

An analogous statement is valid for the right endpoint of the support of $b_{k,\xi}^n$.