Marsden's Identity

For a bi-infinite knot sequence ξ , any polynomial of degree $\leq n$ can be represented as a linear combination of B-splines. In particular, for any $y \in \mathbb{R}$,

$$(x-y)^n = \sum_{k\in\mathbb{Z}} \psi^n_{k,\xi}(y) b^n_{k,\xi}(x), \ x\in\mathbb{R},$$

with $\psi_{k,\xi}^{n}(y) = (\xi_{k+1} - y) \cdots (\xi_{k+n} - y)$.

Comparing coefficients of y^{n-m} on both sides of the identity yields explicit representations for the monomials x^m . In particular, we have

$$1 = \sum_{k} b_{k,\xi}^{n}(x), \quad x = \sum_{k} \xi_{k}^{n} b_{k,\xi}^{n}(x)$$

with $\xi_k^n = (\xi_{k+1} + \dots + \xi_{k+n})/n$ the so-called knot averages or Greville abscissae.