Marsden's Identity

For a bi-infinite knot sequence ξ, any polynomial of degree $\leq n$ can be represented as a linear combination of B-splines. In particular, for any $y \in \mathbb{R}$,

$$
(x-y)^{n}=\sum_{k \in \mathbb{Z}} \psi_{k, \xi}^{n}(y) b_{k, \xi}^{n}(x), x \in \mathbb{R},
$$

with $\psi_{k, \xi}^{n}(y)=\left(\xi_{k+1}-y\right) \cdots\left(\xi_{k+n}-y\right)$.

Comparing coefficients of y^{n-m} on both sides of the identity yields explicit representations for the monomials x^{m}. In particular, we have

$$
1=\sum_{k} b_{k, \xi}^{n}(x), \quad x=\sum_{k} \xi_{k}^{n} b_{k, \xi}^{n}(x)
$$

with $\xi_{k}^{n}=\left(\xi_{k+1}+\cdots+\xi_{k+n}\right) / n$ the so-called knot averages or Greville abscissae.

