Parameter Interval and Regularity of Knot Sequences

The parameter interval D_{ξ}^{n} is the maximal interval on which the B-splines $b_{k,\xi}^{n}$, $k \sim \xi$, which correspond to the knot sequence ξ , form a partition of unity.

For a bi-infinite knot sequence $D_{\xi}^{n} = \mathbb{R}$ and for a finite knot sequence $\xi_{0}, \ldots, \xi_{m+n}, D_{\xi}^{n} = [\xi_{n}, \xi_{m}]$ unless $\xi_{m} = \xi_{m+n}$, in which case $b_{m-1,\xi}^{n}$ is discontinuous at ξ_{m} and $D_{\xi}^{n} = [\xi_{n}, \xi_{m}]$.

We say that a knot sequence ξ is *n*-regular if each B-spline b_k , $k \sim \xi$, is continuous and nonzero at some points in D_{ξ}^n . More explicitly, *n*-regularity requires that all knot multiplicities are $\leq n$ and, for a finite knot sequence $\xi : \xi_0, \ldots, \xi_{m+n}$ in addition, that $\xi_n < \xi_{n+1}, \ \xi_{m-1} < \xi_m$.

Splines

A spline p of degree $\leq n$ with n > 0 is a linear combination of the B-splines corresponding to an n-regular knot sequence ξ :

The coefficients are unique, i.e., the B-splines b_k , $k \sim \xi$, restricted to D_{ξ}^n form a basis for the spline space denoted by S_{ε}^n .

Equivalently, S^n_{ξ} consists of all continuous functions on the parameter interval D^n_{ξ} which are

- polynomials of degree $\leq n$ on the nondegenerate knot intervals of D_{ξ}^{n} ;
- $n \mu$ times continuously differentiable at an interior knot of D_{ξ}^{n} with multiplicity μ .

Uniform B-Splines

The standard uniform B-spline b^n has the knots 0, 1, ..., n + 1. In this special case, the recursions for evaluation and differentiation simplify:

$$nb^{n}(x) = xb^{n-1}(x) + (n+1-x)b^{n-1}(x-1)$$

$$\frac{d}{dx}b^{n}(x) = b^{n-1}(x) - b^{n-1}(x-1).$$

Moreover, the second identity can be written as an averaging process:

The uniform B-splines for an arbitrary uniform knot sequence with grid width h, i.e., with knot intervals $\xi_{\ell} + [0, h]$, are scaled translates of b^n :

$$b_{k,\xi}^n(x) = b^n((x-\xi_k)/h), \quad k \sim \xi.$$