De Boor Algorithm

A linear combination of B-splines

$$p = \sum_k c_k b_k$$

of degree $\leq n$ with knot sequence ξ can be evaluated at $x \in [\xi_{\ell}, \xi_{\ell+1})$ by forming convex combinations of the coefficients of the B-splines which are nonzero at x. Starting with

$$p_k^0 = c_k, \quad k = \ell - n, \ldots, \ell,$$

one computes successively, for $i = 0, \ldots, n-1$,

$$p_k^{i+1} = \gamma_{k,\xi}^{n-i} p_k^i + (1 - \gamma_{k,\xi}^{n-i}) p_{k-1}^i, \quad k = \ell - n + i + 1, \dots, \ell,$$

with

$$\gamma_{k,\xi}^{n-i} = \frac{x - \xi_k}{\xi_{k+n-i} - \xi_k}$$

and obtains p(x) as the final value p_{ℓ}^n .

The triangular scheme is illustrated in the figure. It simplifies slightly if $x = \xi_{\ell}$. If ξ_{ℓ} has multiplicity μ , then $p(x) = p_{\ell-\mu}^{n-\mu}$; i.e., only $n - \mu$ steps of the recursion applied to $c_{\ell-n}, \ldots, c_{\ell-\mu}$ are needed.

Differentiation

The derivative of a spline is a linear combination of B-splines with the same knot sequence. More precisely, for x in any open knot interval $(\xi_{\ell}, \xi_{\ell+1})$ with n + 1 relevant B-splines $b_{k,\ell}^n$,

$$\frac{d}{dx}\left(\sum_{k=\ell-n}^{\ell}c_k b_{k,\xi}^n(x)\right) = \sum_{k=\ell-n+1}^{\ell}\alpha_{k,\xi}^n \nabla c_k b_{k,\xi}^{n-1}(x), \quad \alpha_{k,\xi}^n = \frac{n}{\xi_{k+n}-\xi_k},$$

with ∇ the backward difference operator, i.e., $\nabla c_k = c_k - c_{k-1}$. The identity remains valid at the endpoints ξ_ℓ and $\xi_{\ell+1}$ of the knot interval if these knots have multiplicity < n.

For a spline $p = \sum_{k=0}^{m-1} c_k b_k \in S^n_{\xi}$ with knot sequence ξ_0, \ldots, ξ_{m+n} and multiplicities < n,

$$p' = \sum_{k=1}^{m-1} d_k \, b_{k,\xi}^{n-1} \in S_{\xi'}^{n-1} \,,$$

where ξ' is obtained from ξ by deleting the first and last knots. This is consistent with the difference operation ∇ , which reduces the range of indices by 1.