De Boor Algorithm

A linear combination of B-splines

$$
p=\sum_{k} c_{k} b_{k}
$$

of degree $\leq n$ with knot sequence ξ can be evaluated at $x \in\left[\xi_{\ell}, \xi_{\ell+1}\right)$ by forming convex combinations of the coefficients of the B-splines which are nonzero at x. Starting with

$$
p_{k}^{0}=c_{k}, \quad k=\ell-n, \ldots, \ell,
$$

one computes successively, for $i=0, \ldots, n-1$,

$$
p_{k}^{i+1}=\gamma_{k, \xi}^{n-i} p_{k}^{i}+\left(1-\gamma_{k, \xi}^{n-i}\right) p_{k-1}^{i}, \quad k=\ell-n+i+1, \ldots, \ell,
$$

with

$$
\gamma_{k, \xi}^{n-i}=\frac{x-\xi_{k}}{\xi_{k+n-i}-\xi_{k}}
$$

and obtains $p(x)$ as the final value p_{ℓ}^{n}.

The triangular scheme is illustrated in the figure. It simplifies slightly if $x=\xi_{\ell}$. If ξ_{ℓ} has multiplicity μ, then $p(x)=p_{\ell-\mu}^{n-\mu}$; i.e., only $n-\mu$ steps of the recursion applied to $c_{\ell-n}, \ldots, c_{\ell-\mu}$ are needed.

Differentiation

The derivative of a spline is a linear combination of B-splines with the same knot sequence. More precisely, for x in any open knot interval $\left(\xi_{\ell}, \xi_{\ell+1}\right)$ with $n+1$ relevant B-splines $b_{k, \xi}^{n}$,

$$
\frac{d}{d x}\left(\sum_{k=\ell-n}^{\ell} c_{k} b_{k, \xi}^{n}(x)\right)=\sum_{k=\ell-n+1}^{\ell} \alpha_{k, \xi}^{n} \nabla c_{k} b_{k, \xi}^{n-1}(x), \quad \alpha_{k, \xi}^{n}=\frac{n}{\xi_{k+n}-\xi_{k}}
$$

with ∇ the backward difference operator, i.e., $\nabla c_{k}=c_{k}-c_{k-1}$. The identity remains valid at the endpoints ξ_{ℓ} and $\xi_{\ell+1}$ of the knot interval if these knots have multiplicity $<n$.

For a spline $p=\sum_{k=0}^{m-1} c_{k} b_{k} \in S_{\xi}^{n}$ with knot sequence $\xi_{0}, \ldots, \xi_{m+n}$ and multiplicities $<n$,

$$
p^{\prime}=\sum_{k=1}^{m-1} d_{k} b_{k, \xi}^{n-1} \in S_{\xi^{\prime}}^{n-1}
$$

where ξ^{\prime} is obtained from ξ by deleting the first and last knots. This is consistent with the difference operation ∇, which reduces the range of indices by 1 .

