Accuracy of Quasi-Interpolation

The error of a quasi-interpolant

$$f\mapsto Qf=\sum_k (Q_kf)\,b_k\in S^n_\xi$$

of maximal order satisfies

$$|f(x) - (Qf)(x)| \leq rac{\|Q\|}{(n+1)!} \, \|f^{(n+1)}\|_{\infty,D_x} \, h(x)^{n+1}, \quad x \in D^n_{\xi} \, ,$$

where D_x is the union of the supports of all B-splines b_k , $k \sim x$, which are relevant for x, and $h(x) = \max_{y \in D_x} |y - x|$.

If the local mesh ratio is bounded, i.e., if the quotients of the lengths of adjacent knot intervals are $\leq r_{\xi}$, then the error of the derivatives on the knot intervals $(\xi_{\ell}, \xi_{\ell+1})$ can be estimated by

$$|f^{(j)}(x) - (Qf)^{(j)}(x)| \leq c(n, r_{\xi}) \, \|Q\| \, \|f^{(n+1)}\|_{\infty, D_x} \, h(x)^{n+1-j}$$

for all $j \leq n$.

Choosing a standard projector for Q shows, in particular, that splines approximate smooth functions with optimal order; the norm ||Q|| does depend only on n in this case.