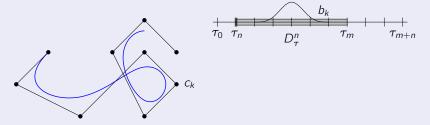
Spline Curve

A spline curve of degree $\leq n$ in \mathbb{R}^d has a parametrization

$$t\mapsto (p_1(t),\ldots,\,p_d(t))=\sum_{k=0}^{m-1}c_kb_k(t),\quad t\in D^n_{ au}\,,$$

with components p_{ν} in a spline space S_{τ}^{n} with finite knot sequence τ : $\tau_{0}, \ldots, \tau_{m+n}$ and parameter interval $D_{\tau}^{n} = [\tau_{n}, \tau_{m}]$.



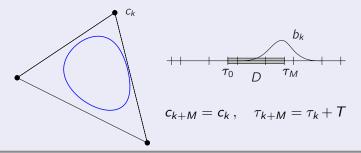
The coefficients $c_k = (c_{k,1}, \ldots, c_{k,d})$ can be combined into an $m \times d$ array C. They are called control points and form the control polygon c for p.

Closed Spline Curve

A closed spline curve of degree $\leq n$ in \mathbb{R}^d has a parametrization

$$t\mapsto (p_1(t),\ldots,p_d(t))=\sum_{k\in\mathbb{Z}}c_k\,b_k(t)\,,\quad t\in\mathbb{R}\,,$$

with components which are continuous *T*-periodic splines. This means that $p_{\nu} \in S^n_{\tau,T}$, $\tau = (\tau_0, \ldots, \tau_{M-1})$, and the B-splines b_k correspond to the periodically extended knot sequence $(\ldots, \tau - T, \tau, \tau + T, \ldots)$ and to *M*-periodic control points.



According to the periodicity conditions, p is determined by M consecutive control points

$$C = \left(egin{array}{c} c_0 \ dots \ c_{\mathcal{M}-1} \end{array}
ight) \, ,$$

which form a closed control polygon for p.

Rational Parametrizations

A nonuniform rational B-spline parametrization (NURBS) r = p/q is the quotient of a spline parametrization $t \mapsto p(t)$ with weighted control points

$$(c_k w_k) \in \mathbb{R}^d, \quad w_k > 0,$$

and a spline function $t \mapsto q(t)$ with coefficients w_k . The weights w_k provide additional design flexibility. Increasing a weight pulls the curve towards the corresponding control point.

We can identify r with a spline curve in homogeneous coordinates parametrized by

$$t\mapsto (p(t)\,|\,q(t))=\sum_k (c_k\,w_k\,|\,w_k)\,b_k(t)\in\mathbb{R}^{d+1}$$
 .

This interpretation is convenient for implementing algorithms such as knot insertion, evaluation, and differentiation.

