Interpolation

Points p_{k} and tangent vectors d_{k} (if provided) can be interpolated with a spline curve at parameter values t_{k}, using any of the interpolation methods for spline functions. The univariate schemes are applied separately in each component to determine the components of the parametrization $p=\sum_{k} c_{k} b_{k}$. Standard choices are cubic Hermite interpolation and cubic spline interpolation with not-a-knot, natural, or clamped boundary conditions.

If only points are given, $k n o t s \tau_{j}$, parameter values t_{k}, and tangent vectors d_{k} (if required) have to be determined based on the available information. Basic choices are

- $t_{k}-t_{k-1}=\left|p_{k}-p_{k-1}\right|$;
- $t_{k}=\tau_{k+\ell}$ with the shift ℓ depending on the labeling of the knots;
- $d_{k}=\left(p_{k+1}-p_{k-1}\right) /\left(t_{k+1}-t_{k-1}\right)$.

If only points are given, $\operatorname{knots} \tau_{j}$, parameter values t_{k}, and tangent vectors d_{k} (if required) have to be determined based on the available information. Basic choices are

- $t_{k}-t_{k-1}=\left|p_{k}-p_{k-1}\right|$;
- $t_{k}=\tau_{k+\ell}$ with the shift ℓ depending on the labeling of the knots;
- $d_{k}=\left(p_{k+1}-p_{k-1}\right) /\left(t_{k+1}-t_{k-1}\right)$.

More accurate derivative approximations employ local polynomial interpolation. The resulting formulas are used in particular at the endpoints of the parameter interval, where one-sided approximations are needed.

