Interpolation

Points p_k and tangent vectors d_k (if provided) can be interpolated with a spline curve at parameter values t_k , using any of the interpolation methods for spline functions. The univariate schemes are applied separately in each component to determine the components of the parametrization $p = \sum_k c_k b_k$. Standard choices are cubic Hermite interpolation and cubic spline interpolation with not-a-knot, natural, or clamped boundary conditions.

If only points are given, knots τ_j , parameter values t_k , and tangent vectors d_k (if required) have to be determined based on the available information. Basic choices are

•
$$t_k - t_{k-1} = |p_k - p_{k-1}|;$$

• $t_k = \tau_{k+\ell}$ with the shift ℓ depending on the labeling of the knots;

•
$$d_k = (p_{k+1} - p_{k-1})/(t_{k+1} - t_{k-1}).$$

If only points are given, knots τ_j , parameter values t_k , and tangent vectors d_k (if required) have to be determined based on the available information. Basic choices are

•
$$t_k - t_{k-1} = |p_k - p_{k-1}|;$$

• $t_k = \tau_{k+\ell}$ with the shift ℓ depending on the labeling of the knots;

•
$$d_k = (p_{k+1} - p_{k-1})/(t_{k+1} - t_{k-1}).$$

More accurate derivative approximations employ local polynomial interpolation. The resulting formulas are used in particular at the endpoints of the parameter interval, where one-sided approximations are needed.