Multivariate Polynomials

A (real) polynomial p of d variables and coordinate degree $n=\left(n_{1}, \ldots, n_{d}\right)$ is a linear combination of monomials,

$$
p(x)=\sum_{k \leq n} c_{k} x^{k}, \quad x^{k}=x_{1}^{k_{1}} \cdots x_{d}^{k_{d}}
$$

with coefficients $c_{k} \in \mathbb{R}$ and $c_{n} \neq 0$. The sum is taken over all multi-indices k (nonnegative integer vectors) with $k_{\nu} \leq n_{\nu}$; i.e., p is a univariate polynomial of degree n_{ν} in each coordinate direction.

Multivariate Polynomials

A (real) polynomial p of d variables and coordinate degree $n=\left(n_{1}, \ldots, n_{d}\right)$ is a linear combination of monomials,

$$
p(x)=\sum_{k \leq n} c_{k} x^{k}, \quad x^{k}=x_{1}^{k_{1}} \cdots x_{d}^{k_{d}}
$$

with coefficients $c_{k} \in \mathbb{R}$ and $c_{n} \neq 0$. The sum is taken over all multi-indices k (nonnegative integer vectors) with $k_{\nu} \leq n_{\nu}$; i.e., p is a univariate polynomial of degree n_{ν} in each coordinate direction.
The d-variate polynomials of coordinate degree $\leq n$ form a linear vector space, denoted by \mathbb{P}^{n}, of dimension $\left(n_{1}+1\right) \cdots\left(n_{d}+1\right)$. More precisely, we write $\mathbb{P}^{n}(D)$ if the variable x is restricted to a particular domain $D \subseteq \mathbb{R}^{d}$.

Multivariate Bernstein Polynomials

The d-variate Bernstein polynomials of coordinate degree $\left(n_{1}, \ldots, n_{d}\right)$ are products of univariate Bernstein polynomials:

$$
b_{k}^{n}(x)=\prod_{\nu=1}^{d} b_{k_{\nu}}^{n_{\nu}}\left(x_{\nu}\right), \quad 0 \leq k_{\nu} \leq n_{\nu},
$$

for x in the standard parameter domain $D=[0,1]^{d}$. They form a basis for $\mathbb{P}^{n}(D)$, which is symmetric with respect to the domain boundaries.

The properties of univariate Bernstein polynomials extend to d variables. In particular,

$$
b_{k}^{n} \geq 0, \quad \sum_{k} b_{k}^{n}=1
$$

Moreover, at a vertex $\sigma \in\{0,1\}^{d}$ of D,

$$
b_{\left(\sigma_{1} n_{1}, \ldots, \sigma_{d} n_{d}\right)}^{n}(\sigma)=1
$$

and all other Bernstein polynomials vanish at σ.

