Multivariate B-Splines

The d-variate B-splines of degree $\left(n_{1}, \ldots, n_{d}\right)$ with respect to the knot sequences ξ are products of univariate B-splines:

$$
b_{k, \xi}^{n}(x)=\prod_{\nu=1}^{d} b_{k_{\nu}, \xi_{\nu}}^{n_{\nu}}\left(x_{\nu}\right)
$$

Their knots in the ν th coordinate direction are $\xi_{\nu, k_{\nu}}, \ldots, \xi_{\nu, k_{\nu}+n_{\nu}+1}$.

The multivariate knot average

$$
\xi_{k}^{n}=\left(\xi_{1, k_{1}}^{n_{1}}, \ldots, \xi_{d, k_{d}}^{n_{d}}\right), \quad \xi_{\nu, k_{\nu}}^{n_{\nu}}=\left(\xi_{\nu, k_{\nu}+1}+\cdots+\xi_{\nu, k_{\nu}+n_{\nu}}\right) / n_{\nu}
$$

is often used to identify multivariate B-splines on a grid and can be viewed as weighted center of their support.

Multivariate Splines

A multivariate spline p of degree $\leq n=\left(n_{1}, \ldots, n_{d}\right)$ is a linear combination of the B -splines corresponding to n-regular knot sequences $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$:

$$
p(x)=\sum_{k} c_{k} b_{k, \xi}^{n}(x), \quad x \in D_{\xi}^{n} .
$$

The coefficients are unique; i.e., the B -splines b_{k} restricted to the parameter hyperrectangle D_{ξ}^{n} form a basis for the spline space denoted by S_{ξ}^{n}.

Multivariate Splines

A multivariate spline p of degree $\leq n=\left(n_{1}, \ldots, n_{d}\right)$ is a linear combination of the B -splines corresponding to n-regular knot sequences $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right):$

$$
p(x)=\sum_{k} c_{k} b_{k, \xi}^{n}(x), \quad x \in D_{\xi}^{n} .
$$

The coefficients are unique; i.e., the B -splines b_{k} restricted to the parameter hyperrectangle D_{ξ}^{n} form a basis for the spline space denoted by S_{ξ}^{n}.
Spline functions on a subdomain $D \subset D_{\xi}^{n}$ are obtained simply by restricting the variable x to the smaller set; the corresponding spline space is denoted by $S_{\xi}^{n}(D)$. A basis consists of the relevant B-splines $b_{k}, k \sim D$, which have some support in D.

Multivariate Splines

A multivariate spline p of degree $\leq n=\left(n_{1}, \ldots, n_{d}\right)$ is a linear combination of the B -splines corresponding to n-regular knot sequences $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right):$

$$
p(x)=\sum_{k} c_{k} b_{k, \xi}^{n}(x), \quad x \in D_{\xi}^{n} .
$$

The coefficients are unique; i.e., the B -splines b_{k} restricted to the parameter hyperrectangle D_{ξ}^{n} form a basis for the spline space denoted by S_{ξ}^{n}.
Spline functions on a subdomain $D \subset D_{\xi}^{n}$ are obtained simply by restricting the variable x to the smaller set; the corresponding spline space is denoted by $S_{\xi}^{n}(D)$. A basis consists of the relevant B-splines $b_{k}, k \sim D$, which have some support in D.
As a consequence of Marsden's identity $S_{\xi}^{n}(D)$ contains all multivariate polynomials of coordinate degre $\leq n$.

