Evaluation

A d-variate spline $p=\sum_{k \sim D} c_{k} b_{k} \in S_{\xi}^{n}(D)$ can be evaluated at a point $x \in D$ with $\xi_{\nu, \ell_{\nu}} \leq x_{\nu}<\xi_{\nu, \ell_{\nu}+1}$ by applying the de Boor algorithm in each variable. For $\nu=1, \ldots, d$, we modify the coefficients

$$
a_{k_{\nu}}=c_{\left(\ell_{1}, \ldots, \ell_{\nu-1}, k_{\nu}, k_{\nu+1}, \ldots, k_{d}\right)}, \quad \ell_{\nu}-n_{\nu} \leq k_{\nu} \leq \ell_{\nu},
$$

simultaneously for all $k_{\mu}=\ell_{\mu}-n_{\mu}, \ldots, \ell_{\mu}, \mu>\nu$. We compute, for $i=n_{\nu}, \ldots, 1$,
$a_{\ell_{\nu}-j} \leftarrow \gamma a_{\ell_{\nu}-j}+(1-\gamma) a_{\ell_{\nu}-j-1}, \gamma=\frac{x_{\nu}-\xi_{\nu, \ell_{\nu}-j}}{\xi_{\nu, \ell_{\nu}-j+i}-\xi_{\nu, \ell_{\nu}-j}}, j=0, \ldots, i-1$,
according to the triangular univariate evaluation scheme. This leads to the modified coefficients $c_{\left(\ell_{1}, \ldots, \ell_{\nu}, k_{\nu+1}, \ldots, k_{d}\right)}$. The final computed coefficient c_{ℓ} then equals $p(x)$.

Differentiation

The partial derivatives $\partial_{\nu}, \nu=1, \ldots, d$, of a d-variate B-spline of degree $n=\left(n_{1}, \ldots, n_{d}\right)$ are differences of B-splines of lower degree:

$$
\partial_{\nu} b_{k, \xi}^{n}=\alpha_{k_{\nu}, \xi_{\nu}}^{n_{\nu}} b_{k, \xi}^{n-e_{\nu}}-\alpha_{k_{\nu}+1, \xi_{\nu}}^{n_{\nu}} b_{k+e_{\nu}, \xi}^{n-e_{\nu}}, \quad \alpha_{k_{\nu}, \xi_{\nu}}^{n_{\nu}}=\frac{n_{\nu}}{\xi_{\nu, k_{\nu}+n_{\nu}}-\xi_{\nu, k_{\nu}}}
$$

with e_{ν} the ν th unit vector.

Differentiation

The partial derivatives $\partial_{\nu}, \nu=1, \ldots, d$, of a d-variate B-spline of degree $n=\left(n_{1}, \ldots, n_{d}\right)$ are differences of B-splines of lower degree:

$$
\partial_{\nu} b_{k, \xi}^{n}=\alpha_{k_{\nu}, \xi_{\nu}}^{n_{\nu}} b_{k, \xi}^{n-e_{\nu}}-\alpha_{k_{\nu}+1, \xi_{\nu}}^{n_{\nu}} b_{k+e_{\nu}, \xi}^{n-e_{\nu}}, \quad \alpha_{k_{\nu}, \xi_{\nu}}^{n_{\nu}}=\frac{n_{\nu}}{\xi_{\nu, k_{\nu}+n_{\nu}}-\xi_{\nu, k_{\nu}}},
$$

with e_{ν} the ν th unit vector.

Accordingly, the partial derivative of a multivariate spline in $S_{\xi}^{n}(D)$ is given by

$$
\partial_{\nu} \sum_{k \sim D} c_{k} b_{k, \xi}^{n}=\sum_{k \sim D} \alpha_{k_{\nu}, \xi_{\nu}}^{n_{\nu}}\left(c_{k}-c_{k-e_{\nu}}\right) b_{k, \xi}^{n-e_{\nu}}
$$

where on both sides the sum is taken over the relevant B-splines for the domain D.

